Skip to main content

Évaluation instrumentale de la mobilité et de la force musculaire du rachis cervical Applications cliniques

  • Chapter
Le rachis cervical vieillissant
  • 387 Accesses

Résumé

Les dysfonctionnements du rachis cervical sont extrêmement courants dans la population générale. Les cervicalgies communes, c’est-à-dire non secondaires à une cause organique particulière (infection, tumeur, affection rhumatismale inflammatoire, affection métabolique), sont les plus répandues, elles peuvent être d’origine traumatique, dégénérative ou ergonomique (maintien prolongé d’une posture ou répétitivité de la tâche). Leur prévalence est de 50% aux États-Unis (1) et en France, une étude récente réalisée au sein d’une population active rapporte des cervicalgies chez 41% des sujets au cours des 6 derniers mois (2). Pour une part importante de ces patients, l’évolution se fait vers la chronicité, les symptômes durant plus de 6 mois dans 30% des cas (1). Pour toute pathologie affectant le rachis cervical, la fonction posturo-cinétique cervicale et les fonctions sensorielles (vision, équilibration, etc.) liées au placement de la tête dans l’espace sont perturbées. Lors de deux études récentes, l’incidence a été estimée à 18 pour 100 000 habitants (3) et pour une cohorte, étudiée en milieu professionnel en France à 7,3 et 12,5% des hommes et des femmes (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Barry M, Jenner JR (1995) ABC of rheumatology. Pain in neck, shoulder, and arm. BMJ 310: 183–6

    PubMed  CAS  Google Scholar 

  2. Leclerc A, Niedhammer I, Landre MF et al. (1999) One-year predictive factors for various aspects of neck disorders. Spine 24: 1455–62

    PubMed  CAS  Google Scholar 

  3. Croft PR, Lewis M, Papageorgiou AC et al. (2001) Risk factors for neck pain: a longitudinal study in the general population. Pain 93: 317–25

    PubMed  CAS  Google Scholar 

  4. Cassou B, Derriennic F, Monfort C et al. (2002) Chronic neck and shoulder pain, age, and working conditions: longitudinal results from a large random sample in France. Occup Environ Med 59: 537–44

    PubMed  CAS  Google Scholar 

  5. Clark W, Haldeman S (1993) The development of guideline factors for the evaluation of disability in neck and back injuries. Division of Industrial Accidents, State of California. Spine 18: 1736–45

    PubMed  CAS  Google Scholar 

  6. Bovim G, Schrader H, Sand T (1994) Neck pain in the general population. Spine 19: 1307–9

    PubMed  CAS  Google Scholar 

  7. Aker PD, Gross AR, Goldsmith CH et al. (1996) Conservative management of mechanical neck pain: systematic overview and meta-analysis. Br Med J 313: 1291–6

    CAS  Google Scholar 

  8. Berg HE, Berggren G, Tesch PA (1994) Dynamic neck strength training effect on pain and function. Arch Phys Med Rehabil 75: 661–5

    PubMed  CAS  Google Scholar 

  9. Rat, AC, Guillemin F (2004) Épidémiologie et impact médico-économique des cervicalgies. Rev Rhum 71: 653–8

    Google Scholar 

  10. Barton PM, Hayes KC (1996) Neck flexor muscle strength, efficiency, and relaxation times in normal subjects and subjects with unilateral neck pain and headache. Arch Phys Med Rehabil 77: 680–7

    PubMed  CAS  Google Scholar 

  11. Kumar S, Narayan Y, Amell T (2001) Cervical strength of young adults in sagittal, coronal and intermediate planes. Clin Biomech 16: 380–8

    CAS  Google Scholar 

  12. Prushansky T, Dvir Z (2008) Cervical motion testing: methodology and clinical implications. J Manipulative Physiol Ther 31: 503–8

    PubMed  Google Scholar 

  13. Haynes MJ, Edmonston E (2002) Accuracy and reliability of a new, protractor-based neck goniometer. J Manipul Physiol Ther 25: 579–86

    Google Scholar 

  14. Chen J, Solinger AB, Poncet JF et al. (1999) Meta-analysis of normative cervical spine. Spine 24: 1571–8

    PubMed  CAS  Google Scholar 

  15. Youdas JW, Garrett TR, Suman VJ et al. (1992) Normal range of motion of the cervical spine: an initial goniometric study. Phys Ther 72: 770–80

    PubMed  CAS  Google Scholar 

  16. Youdas JW, Carey JC, Garrett TR (1991) Reliability of measurements of cervical spine range of motion-comparison of three methods. Phys Ther 71: 98–106

    PubMed  CAS  Google Scholar 

  17. Alaranta H, Hurri H, Heliovaara M et al. (1994) Flexibility of the spine: normative values of goniometric and tape measurements. Scand J Rehab Med 26: 147–54

    CAS  Google Scholar 

  18. Chibnall J, Duckiro P, Baumer K (1994) The influence of body six on linear measurement used to reflect cervical range of motion. Phys Ther 74: 1134–7

    PubMed  CAS  Google Scholar 

  19. Bush K, Collins N, Portman L et al. (2000) Validity and intertester reliability of cervical range of motion using inclinometer measurement. J Man Manipulative Ther 8: 52–61

    Google Scholar 

  20. Tousignant M, Boucher N, Bourbonnais J et al. (2001) Intratester and intertester reliability of the Cybex electronic digital inclinometer (EDI-320) for measurement of active neck flexion and extension in healthy subjects. Man Ther 6: 235–41

    PubMed  CAS  Google Scholar 

  21. Jordan K (2000) Assessment of published reliability studies for cervical spine range-of-motion measurement tools. J Manipulative Physiol Ther 23: 180–95

    PubMed  CAS  Google Scholar 

  22. Tousignant M, Bellefeuille L, O’Dounoughue S et al. (2000) Criterion validity of the cervical range of motion (CROM) goniometer for cervical flexion and extension. Spine 25: 324–30

    PubMed  CAS  Google Scholar 

  23. Castro W, Sautmann A, Schilgen M et al. (2000) Noninvasive three-dimensional analysis of cervical spine motion in normal subjects in relation to age and sex. Spine 25: 443–9

    PubMed  CAS  Google Scholar 

  24. Dvir Z, Prushansky T (2000) Reproducibility and instrument validity of a new ultrasonography-based system for measuring cervical spine kinematics. Clin Biomech 15: 658–64

    CAS  Google Scholar 

  25. Jordan K, Dziedzic K, Jones PW et al. (2000) The reliability of the three-dimensional FAS-TRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology 39: 382–8

    PubMed  CAS  Google Scholar 

  26. Mannion AF, Klein GN, Dvorak J et al. (2000) Range of global motion of the cervical spine: intraindividual reliability and the influence of measurement device. Eur Spine J 9: 379–85

    PubMed  CAS  Google Scholar 

  27. Petersen CM, Johnson RD, Schuit D (2000) Reliability of cervical range of motion using the OSI CA 6000 Spine Motion Analyser on asymptomatic subjects. Spine 5: 82–8

    CAS  Google Scholar 

  28. Dvir Z, Werner V, Peretz C (2002) The effect of measurement protocol on active cervical motion in healthy subjects. Physiother Res Int 7: 136–45

    PubMed  Google Scholar 

  29. Leggett SH, Graves JE, Pollock ML et al. (1991) Quantitative assessment and training of isometric cervical extension strength. Am Journal Sports Med 19: 653–9

    CAS  Google Scholar 

  30. Lu WW, Bishop PJ (1996) Electromyographic activity of the cervical musculature during dynamic lateral bending. Spine 21: 2443–9

    PubMed  CAS  Google Scholar 

  31. Portero P, Genries V (2003) An update of neck muscle strength: from isometric to isokinetic assessment. Isokinet Exerc Sci 11: 1–8

    Google Scholar 

  32. Dvir Z, Prushansky T (2008) Cervical muscles strength testing: methods and clinical implications. J Manipulative Physiol Ther 31: 518–24

    PubMed  Google Scholar 

  33. Zangemeister WH, Stark L, Meienberg O et al. (1982) Neural control of head rotation: electromyographic evidence. J Neurol Sci 55: 1–14

    PubMed  CAS  Google Scholar 

  34. Chiu T, LO S (2002) Evaluation of cervical range of motion and isometric neck muscle strength: reliability and validity. Clin Rehabil 16: 851–8

    PubMed  Google Scholar 

  35. Chiu TTW, Lam T-H, Headley AJ (2002) Maximal isometric muscle strength of the cervical spine in healthy volunteers. Clin Rehabil 16: 772–9

    PubMed  Google Scholar 

  36. Peolsson A, Öberg B, Hedlund R (2001) Intra and inter-tester reliability and reference values for isometric neck strength. Physiother Res Int 6: 15–26

    PubMed  CAS  Google Scholar 

  37. Portero P, Guezennec CY (1995) Mise au point d’une méthode d’évaluation de la fonction musculaire du rachis cervical. Ann Kinésithér 22: 31–6

    Google Scholar 

  38. Garcés GL, Medina D, Milutinovic L et al. (2002) Normative database of isometric cervical strength in a healthy population. Med Sci Sports Exerc 33: 464–70

    Google Scholar 

  39. Mayer T, Gatchel RJ, Keeley J et al. (1994) A male incumbent worker industrial database. Part II: cervical spinal physical capacity. Spine 19: 762–4

    Article  PubMed  CAS  Google Scholar 

  40. Staudte HW, Dühr N (1994) Age-and sex-dependent force-related function of the cervical spine. Eur Spine J 3: 155–61

    PubMed  CAS  Google Scholar 

  41. Wikholm JB, Bohannon RW (1991) Hand-held dynamometer measurements: Tester strength makes a difference. J Orthop Phys Ther 13: 191–8

    CAS  Google Scholar 

  42. Lecompte J, Maïsetti O, Thoreux P et al. (2006) Validation of a specific device for isometric and isokinetic assessment of the cervical spine muscles in sagittal and coronal planes. J Biomech 39: S103

    Google Scholar 

  43. Olivier PE, Du Toit DE (2008) Isokinetic neck strength profile of senior elite rugby union players. J Sci Med Sport 11: 96–105

    PubMed  Google Scholar 

  44. Portero P, Bigard AX, Gamet D et al. (2001) Effects of resistance training in humans on neck muscle performance, and electromyogram power spectrum changes. Eur J Appl Physiol 84: 540–6

    PubMed  CAS  Google Scholar 

  45. Ylinen J, Rezasollani A, Julin M et al. (1999) Reproducibility of isometric strength: measurement of neck muscles. Clin Biomech 14: 217–9

    CAS  Google Scholar 

  46. Ylinen J, Salo P, Nykanen M et al. (2004) Decreased isometric neck strength in women with chronic neck pain and the reproducibility of neck strength measurements. Arch Phys Med Rehabil 85: 1303–8

    PubMed  Google Scholar 

  47. Barber A (1994) Upper cervical spine flexor muscles: age related performance in asymptomatic women. Austr J Physiother 40: 167–71

    Google Scholar 

  48. Jordan A, Mehlsen J, Bülow PM et al. (1999) Maximal isometric strength of the cervical musculature in 100 healthy volunteers. Spine 24: 1343–8

    PubMed  CAS  Google Scholar 

  49. Vasavada AN, Li S, Delp SL (2001) Three-dimensional isometric strength of neck muscles in human. Spine 26: 1904–9

    PubMed  CAS  Google Scholar 

  50. Strimpakos N, Sakellari V, Gipftos G et al. (2004) Intratester and intertester reliability of neck isometric dynamometry. Arch Phys Med Rehabil 85: 1309–16

    PubMed  Google Scholar 

  51. Medendorp MJ, Melis BJM, Gielen CCAM et al. (1998) Off-centric rotation axes in natural head movements: implications for vestibular reafference and kinematic redundancy. J Neurophysiol 79: 2025–39

    PubMed  CAS  Google Scholar 

  52. Rezasoltani A, Ylinen J, Bakhtiary AH et al. (2008) Cervical muscle strength measurement is dependent on the location of thoracic support. Br J Sports Med 42: 379–82

    PubMed  CAS  Google Scholar 

  53. Jordan A, Mehlsen J, Ostergaard K (1997) A comparison of physical characteristics between patients seeking treatment for neck pain and age-matched healthy people. J Manipulative Physiol Ther 20: 468–75.

    PubMed  CAS  Google Scholar 

  54. Vernon HT, Aker P, Aramenko M et al. (1992) Evaluation of neck muscle strength with a modified spygmomanometer dynamometer: reliability and validity. J Manipulative Physiol Ther 15: 343–9

    PubMed  CAS  Google Scholar 

  55. Kristjansson E, Dall’Alba P, Jull G (2001) Cervicocephalic kinaesthesia: reliability of a new test approach. Physiother Res Int 6: 224–35

    PubMed  CAS  Google Scholar 

  56. Highland TR, Dreisinger TE, Vie LL et al. (1992) Changes in isometric strength and range of motion of the isolated cervical spine after eight weeks of clinical rehabilitation. Spine 17: S77–S82

    Google Scholar 

  57. Levoka S, Keinänen-Kiukanniemi S (1993) Active or passive physiotherapy for occupational cervicobrachial disorders? A comparison of two treatment methods with a 1-year follow-up. Arch Phys Med Rehabil 74: 425–30

    Google Scholar 

  58. Ylinen J, Ruuska J (1994) Clinical use of neck isometric strength measurement in rehabilitation. Arch Phys Med Rehabil 75: 465–9

    PubMed  CAS  Google Scholar 

  59. Jordan A, Bendix T, Nielsen H et al. (1998) Intensive training, physiotherapy, or manipulation for patients with chronic neck pain. A prospective, single-blinded, randomized clinical trial. Spine 23: 311–9

    PubMed  CAS  Google Scholar 

  60. Bertuit J, Van Geyt B, Feipel V (2008) Validité et fiabilité des moyens d’évaluation du rachis cervical: revue critique de la littérature. Sci & Kinésither 1: 31–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Portero, P. (2009). Évaluation instrumentale de la mobilité et de la force musculaire du rachis cervical Applications cliniques. In: Le rachis cervical vieillissant. Springer, Paris. https://doi.org/10.1007/978-2-287-99074-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-99074-8_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-99073-1

  • Online ISBN: 978-2-287-99074-8

Publish with us

Policies and ethics