Advertisement

Alcaloses: diagnostic et traitement

  • J.-C. Orban
  • C. Ichai
Part of the Le point sur ... book series (POINT)

Résumé

L’alcalose métabolique est une augmentation primitive des bicarbonates plasmatiques supérieure à 28 mmol ß L−1 responsable d’une élévation du pH > 7,45. Une réponse respiratoire prévisible y est associée (0,6 mmHg par mmol de bicarbonate) (1). En termes d’épidémiologie, l’incidence de ce trouble acidobasique est peu connue. Des travaux anciens en ont fait le trouble le plus fréquent avec des incidences de l’ordre de 50%. Sur un travail plus récent, son incidence varie dans la même population entre 5 et 85 % (2). Ces chiffres sont expliqués par deux raisons essentielles: la méthode d’interprétation et la population étudiée. Dans cette étude, l’incidence de l’alcalose métabolique en réanimation médico-chirurgicale était de 5 % en utilisant la méthode d’Henderson-Hasselbach et de 85 % en utilisant la méthode de Stewart. Cette discordance est en grande partie due à la fréquence de l’hypoalbuminémie qui a un effet alcalinisant (3). En ce qui concerne le type de patient, le travail d’Okusawa retrouvait une incidence de 60 % d’alcalose métabolique sur une population de patient en postopératoire de chirurgie digestive (4). Compte tenu de l’évolution des pratiques dans ce domaine avec la réalimentation précoce, il est très probable que l’incidence actuelle de ce trouble soit très inférieure dans la population générale de réanimation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Javaheri S, Shore NS, Rose B, Kazemi H (1982) Compensatory hypoventilation in metabolic alkalosis. Chest 81: 296–301PubMedCrossRefGoogle Scholar
  2. 2.
    Tomescu C, Orban JC, Ichai C (2007) Interprétation des troubles acidobasiques en réanimation: intérêt du principe de Stewart. Ann Fr Anesth Réanim 26: S200Google Scholar
  3. 3.
    Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 162: 2246–51PubMedGoogle Scholar
  4. 4.
    Okusawa S, Aikawa N, Abe O (1985) High incidence of postoperative metabolic alkalosis in surgical patients. Keio J Med 34: 115–22PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson LE, Henrich WL (1987) Alkalemia-associated morbidity and mortality in medical and surgical patient. South Med J 80: 729–33PubMedCrossRefGoogle Scholar
  6. 6.
    Majima HJ, Oberley TD, Furukawa K et al. (1998) Prevention of mitochondrial injury by manganese superoxide dismutase reveals a primary mechanism for alkaline-induced cell death. J Biol Chem 273: 8217–24PubMedCrossRefGoogle Scholar
  7. 7.
    Galla JH (2000) Metabolic alkalosis. J Am Soc Nephrol 11: 369–75PubMedGoogle Scholar
  8. 8.
    Rosen RA, Julian BA, Dubovsky EV, Galla JH, Luke RG (1988) On the mechanism by which chloride corrects metabolic alkalosis in man. Am J Med 84: 449–57PubMedCrossRefGoogle Scholar
  9. 9.
    Seldin DW, Rector FC (1972) The generation and maintenance of metabolic alkalosis. Kidney Int 1: 306–21PubMedCrossRefGoogle Scholar
  10. 10.
    Cogan MG, Liu FY, Berger BE, Sebastian A, Rector FC (1983) Metabolic alkalosis. Med Clin North Am 67: 903–15PubMedGoogle Scholar
  11. 11.
    Rubin SI, Sonnenberg B, Zettle R, Halperin ML (1994) Metabolic alkalosis mimicking the acute sequestration of HCl in rats: bucking the alkaline tide. Clin Invest Med 17: 515–21PubMedGoogle Scholar
  12. 12.
    Galla JH, Gifford JD, Luke RG, Rome L (1991) Adaptations to chloride depletion alkalosis. Am J Physiol 261: R771–81PubMedGoogle Scholar
  13. 13.
    Perez GO, Oster JR, Rogers A (1987) Acid-base disturbances in gastrointestinal diseases. Dig Dis Sci 32: 1033–42PubMedCrossRefGoogle Scholar
  14. 14.
    Luke RG, Galla JH (1983) Chloride-depletion alkalosis with a normal extracellular fluid volume. Am J Physiol 245: F419–24PubMedGoogle Scholar
  15. 15.
    Galla JH, Bonduris DN, Luke RG (1983) Correction of acute chloride-depletion alkalosis without volume expansion. Am J Physiol 244: F217–21PubMedGoogle Scholar
  16. 16.
    Galla JH, Bonduris DN, Luke RG (1987) Effects of chloride and extracellular fluid volume on bicarbonate reabsorption along the nephron in metabolic alkalosis in the rat. Reassessment of the classical hypothesis of the pathogenesis of metabolic alkalosis. J Clin Invest 80: 41–50PubMedCrossRefGoogle Scholar
  17. 17.
    Galla JH, Bonduris DN, Sanders PW, Luke RG (1984) Volume independant reductions in glomerular filtration rate in acute chloride depletion alkalosis in the rat: evidence for mediation by tubuloglomerular feed-back. J Clin Invest 74: 2002–8PubMedCrossRefGoogle Scholar
  18. 18.
    Sabatini S (1996) The cellular basis of metabolic alkalosis. Kidney Int 49: 906–17PubMedCrossRefGoogle Scholar
  19. 19.
    Hroprot M, Fowler N, Halmark B, Giebisch G (1985) Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int 28: 477–83CrossRefGoogle Scholar
  20. 20.
    Schwartz WB, Hays RM, Polak A, Haynie GD (1961) Effects of chronic hypercapnia on electrolyte and acid-base equilibrium II: Recovery with special reference to the influence of chloride intake. J Clin Invest 40: 1238–49PubMedCrossRefGoogle Scholar
  21. 21.
    Levi M (1990) South western internal medicine conference. Primary hyperaldosteronism. Am J Med Sci 300: 189–96PubMedCrossRefGoogle Scholar
  22. 22.
    Kelleher SP, Schulman G (1987) Severe metabolic alkalosis complicating regional citrate hemodialysis. Am J Kidney Dis 9: 235–6PubMedGoogle Scholar
  23. 23.
    Arieff AI (1991) Indications for use of bicarbonate in patient with metabolic alkalosis. Br J Med 67: 165–77Google Scholar
  24. 24.
    Morgera S, Scholle C, Voss G et al. (2004) Metabolic complications during regional citrate anticoagulation in continuous venovenous hemodialysis: single-center experience. Nephron Clin Pract 97: 131–6CrossRefGoogle Scholar
  25. 25.
    Morgera S, Schneider M, Slowinski T et al. (2009) A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid-base status. Crit Care Med 37: 2018–24PubMedCrossRefGoogle Scholar
  26. 26.
    Oudemans-van Straaten HM, Bosman RJ, Koopmans M et al. (2009) Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med 37: 545–52PubMedCrossRefGoogle Scholar
  27. 27.
    Schuman CA, Jones HW (1985) The «milk-alkalosis» syndrome: two case reports with discussion of pathogenesis. Q J Med 55: 119–22PubMedGoogle Scholar
  28. 28.
    Berger BE, Cogan MG, Sebastian A (1984) Reduced glomerular filtration and enhanced bicarbonate reabsorption maintain metabolic alkalosis in humans. Kidney Int 26: 205–8PubMedCrossRefGoogle Scholar
  29. 29.
    Finkle D, Dean RE (1981) Buffered hydrochlorid acid: a modern method of treating metabolic alkalosis. Ann Surg 47: 103–8Google Scholar
  30. 30.
    Schröck H, Kuschinsky W (1989) Cerebrospinal fluid ionic regulation, cerebral blood flow, and glucose use during chronic metabolic alkalosis. Am J Physiol 257: H1220–7PubMedGoogle Scholar
  31. 31.
    Harrington JT (1984) Metabolic alkalosis. Kidney Int 26: 88–97PubMedCrossRefGoogle Scholar
  32. 32.
    Howard JS III (1993) The psychosis of metabolic alkalosis. Int Physiol Behav Sci 28: 353–7CrossRefGoogle Scholar
  33. 33.
    Horvat M, Tomsic M (1991) Torsades de pointes associates with combined severe metabolic and respiratory alkalosis. Clin Int Care 2: 47–9Google Scholar
  34. 34.
    Nakane E, Kono T, Sasaki Y et al. (2004) Gitelman’s syndrome with exercise-induced ventricular tachycardia. Circ J 68: 509–11PubMedCrossRefGoogle Scholar
  35. 35.
    Brater DC, Morrelli HF (1981) Systemic alkalosis and digitalis related arrhythmias. Acta Med Scand 647: 79–85Google Scholar
  36. 36.
    Shear L, Brandman IS (1973) Hypoxia and hypercapnia caused by respi37 Van Ypersele De Strihou C, Frans A (1973) The response to chronic metabolic alkalosis and acidosis in disease. Clin Sci Mol Med 45: 439–48Google Scholar
  37. 37.
    Brimioulle S, Kahn RJ (1990) Effects of metabolic alkalosis on pulmonary gas exchange. Am Rev Resp Dis 141: 1185–9PubMedGoogle Scholar
  38. 38.
    Gordon JB, Martinez FR, Keller PA, Tod ML, Madden JA (1993) Differing effects of acute and prolonged alkalosis on hypoxic pulmonary vasoconstriction. Am Rev Resp Dis 148: 1651–6PubMedCrossRefGoogle Scholar
  39. 39.
    Rama BN, Varghese J, Genova G, Kumar S (1993) Severe acute metabolic alkalosis. Nebraska Med J 2: 151–4Google Scholar
  40. 40.
    Amundson DE, Diamant J (1994) Severe metabolic alkalosis. Transoesophageal Echocardiography 87: 275–77Google Scholar
  41. 41.
    Lavie CJ, Crocker EF, Key KJ, Ferguson TG (1986) Marked hypochloremic metabolic alkalosis with severe compensatory hypoventilation. South Med J 79: 1296–9PubMedCrossRefGoogle Scholar
  42. 42.
    Neary RH, Edward JD (1987) Metabolic alkalosis and hyperlactataemia. Br J Med 294: 1462–4CrossRefGoogle Scholar
  43. 43.
    Hollidge-Horvat MG, Parolin ML, Wong D, Jones NL, Heigenhauser GJ (2000) Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. Am J Physiol Endocrinol Metab 278: E316–29PubMedGoogle Scholar
  44. 44.
    Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesth Scand 107: 123–8CrossRefGoogle Scholar
  45. 45.
    Fencl V, Leith DE (1993) Stewart’s quantitative acid-base chemistry: applications in biology and medicine. Resp Physiol 91: 1–16CrossRefGoogle Scholar
  46. 46.
    Kellum JA, Kraner DJ, Pinsky MR (1995) Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 10: 51–5PubMedCrossRefGoogle Scholar
  47. 47.
    Jabor A, Kazda A (1995) Modelling of acid-base equilibria. Acta Anaesthesiol Scand 39: 119–22CrossRefGoogle Scholar
  48. 48.
    Norris SH, Kurtzman NA (1988) Does chloride play an independant role in the pathogenesis of metabolic alkalosis? Semin Nephrol 8: 101–8PubMedGoogle Scholar
  49. 49.
    Hernandez RE, Schambelan M, Cogan MG, Colman J, Morris RC, Sebastian A (1987) Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis. Kidney Int 31: 1356–67PubMedCrossRefGoogle Scholar
  50. 50.
    Jones JW, Sebastian A, Hulter HN (1982) Systemic and renal acid-base effects of chronic dietary potassium depletion in humans. Kidney Int 21: 402–7PubMedCrossRefGoogle Scholar
  51. 51.
    Mersin SS, Ramelli GP, Laux-End R, Bianchetti MG (1995) Urinary chloride excretion distinguishes between renal and extrarenal metabolic alkalosis. Em J Pediatr 154: 979–82CrossRefGoogle Scholar
  52. 52.
    Scheich A, Donnelly S, Cheema-Dhadli S, Schweigert M, Vasuvattakul S, Halperin ML (1994) Does saline «correct» the abnormal mass balance in metabolic alkalosis associated with chloride depletion in the rat? Clin Invest Med 17: 448–60PubMedGoogle Scholar
  53. 53.
    Wesson DE (1994) Combined K+ and Cl- repletion corrects augmented H+ secretion by distal tubules in chronic alkalosis. Am J Physiol 266: F592–603PubMedGoogle Scholar
  54. 54.
    Ward JL, Smith DF, Fubini SL, Grohn YT (1993) Comparison of 0.9, 3.6 and 7.2% NaCl for correction of experimentally induced hypochloremic hypokaliemic metabolic alkalosis in sheep. Am J Vet Res 54: 1160–9PubMedGoogle Scholar
  55. 55.
    Bazilinski NG, Duner G, Ing TS (1987) treatment of metabolic alkalosis in renal failure. Int J Artif Organs 10: 284–6PubMedGoogle Scholar
  56. 56.
    Knutsen OH (1983) New method for administration of hydrochlorid acid in metabolic alkalosis. Lancet 1: 953–5PubMedCrossRefGoogle Scholar
  57. 57.
    Brimioulle S, Vincent JL, Dufaye P, Berre J, Degaute JP, Kahn RJ (1985) Hydrochloric acid infusion for treatment of metabolic alkalosis: effects on acid-base balance and oxygenation. Crit Care Med 13: 738–42PubMedCrossRefGoogle Scholar
  58. 58.
    Brimioulle S, Berre J, Dufaye P, Vincent JL, Degaute JP, Kahn RJ (1989) Hydrochloric acid infusion for treatment of metabolic alkalosis associated with respiratory acidosis. Crit Care Med 17: 232–6PubMedCrossRefGoogle Scholar
  59. 59.
    Mazur JE, Devlin JW, Peters MJ, Jankowski MA, Iannuzzi MC, Zarowitz BJ (1999) Single versus multiple doses of acetazolamide for metabolic alkalosis in critically ill medical patients: a randomized, double-blind trial. Crit Care Med 27: 1257–61PubMedCrossRefGoogle Scholar
  60. 60.
    Wagenaar M, Vos PJ, Heijdra YF, Teppema LJ, Folgering HT (2002) Combined treatment with acetazolamide and medroxyprogesterone in chronic obstructive pulmonary disease patients. Eur Respir J 20: 1130–7PubMedCrossRefGoogle Scholar
  61. 61.
    Faisy C, Mokline A, Sanchez O, Tadié JM, Fagon JY (2010) Effectiveness of acetazolamide for reversal of metabolic alkalosis in weaning COPD patients from mechanical ventilation. Intensive Care Med 36: 859–63PubMedCrossRefGoogle Scholar
  62. 62.
    Ponce P, Santana A, Vinhas J (1991) Treatment of severe metabolic alkalosis by «acid dialysis». Crit Care Med 19: 583–5PubMedCrossRefGoogle Scholar
  63. 63.
    Gerhardt RE, Koethe JD, Glickman JD, Ntoso KA, Hugo JP, Wolf CJ (1995) Acid dialysate correction of metabolic alkalosis in renal failure. Am J Kidney Dis 25: 343–5PubMedCrossRefGoogle Scholar
  64. 64.
    Gennari FJ (1994) Respiratory acidosis and alkalosis. In: Narins NG, ed. Clinical disorders of fluid and electrolyte metabolism (5th ed). New-York, MacGraw Hill: 957–89Google Scholar
  65. 65.
    Theye RA, Milde JH, Michenfelder JD (1966) Effect of hypocapnia on cardiac output during anesthesia. Anesthesiology 27: 778–82PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2011

Authors and Affiliations

  • J.-C. Orban
  • C. Ichai

There are no affiliations available

Personalised recommendations