• C. Ichai
Part of the Le point sur ... book series (POINT)


Le métabolisme du phosphore résulte d’échanges permanents entre les différents secteurs de l’organisme. Il est intimement lié à celui du calcium et étroitement régulé par de nombreux mécanismes qui ont pour cible essentiellement le tube digestif, l’os et le rein. Après avoir abordé les paramètres impliqués dans ce métabolisme, le diagnostic et le traitement des hypophosphatémies et des hyperphosphatémies seront développés dans les chapitres suivants.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nangaku N, Fukagawa M, Lee DBN, Kurokawa K (1995) Normal and abnormal phosphorus metabolism. In: Arieff AI, DeFronzo RA, eds. Fluid, electrolyte and acid-base disorders. New York, Churchill Livingstone: 493–526Google Scholar
  2. 2.
    Albouy S, Rami L, Grimaud D (2006) Métabolisme phosphocalcique. In: Martin C, Riou B, Vallet B, eds. Physiologie humaine appliquée. Rueil-Malmaison, Arnette: 471–84Google Scholar
  3. 3.
    Pointorerio G, Locatelli F, Ritz E (1998) Calcium phosphate and magnesium balance in patients with acute illness. In: Ronco C, Bellomo R, eds. Critical Care Nephrology. Dordrecht, Kluwer Academic Publisher: 211–23Google Scholar
  4. 4.
    Hruska KA (2002) Hypophosphatemia and hyperphosphatemia. In: DuBose TD, Hamm LL, eds. Acid-base and electrolyte disorders: a companion to Brenner’s and Rector’s the kidney. Philadelphia, Saunders: 489–512Google Scholar
  5. 5.
    Yanagawa N, Nakhoul F, Kurokawa K, Lee DBN (1994) Physiology of phosphorus metabolism. In: Narins RG, ed. Clinical Disorders of Fluid and Electrolyte metabolism. New York, MacGraw Hill: 307–372Google Scholar
  6. 6.
    Prié D, Friedlander G (2010) Genetic disorders of renal phosphate transport. N Engl J Med 362: 2399–409PubMedCrossRefGoogle Scholar
  7. 7.
    Taylor JG, Bushinsky DA (2009) Calcium and phosphorus homeostasis. Blood Purif 27: 387–94PubMedCrossRefGoogle Scholar
  8. 8.
    Gaasbeek A, Meinders AE (2005) Hypophosphatemia: an update on its etiology and treatment. Am J Med 118: 1094–101PubMedCrossRefGoogle Scholar
  9. 9.
    Magyar CE, Friedman PA (2002) Renal regulation of calcium, phosphate and magnesium. In: DuBose TD, Hamm LL, eds. Acid-base and electrolyte disorders: a companion to Brenner’s and Rector’s the kidney. Philadelphia, Saunders: 435–52Google Scholar
  10. 10.
    Lee R, Weber TJ (2010) Disorders of phosphorus homeostasis. Curr Opin Endocrinol Diabetes Obes 17: 561–7PubMedCrossRefGoogle Scholar
  11. 11.
    Razzaque M, Lanske B (2007) The emerging role of the fibroblast growth factor-23-klotho axis in renal regulation of phosphate homeostasis. J Endocrinol 194: 1–10PubMedCrossRefGoogle Scholar
  12. 12.
    Murer H, Lötscher M, Kaissling B, Levi M, Kempson A, Biber J (1996) Renal brush border membrane Na/Pi-co-transport: Molecular aspects in PTH-dependent and dietery regulation. Kidney Int 49: 1769–73PubMedCrossRefGoogle Scholar
  13. 13.
    Murer H, Forster I, Hilfiker H et al. (1998) Cellular/molecular control of renal Na/Pi-co-transport. Kidney Int 65 (suppl): S2–10CrossRefGoogle Scholar
  14. 14.
    Prié HD, Urena Torres P, Friedlander G (2009) Fibroblast Growth Factor 23-Klotho: a new axis of phosphate balance. Med Sci 25: 489–95Google Scholar
  15. 15.
    Segawa H, Onitsuka A, Furutani J et al. (2009) Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Am J Physiol Renal Physiol 297: F671–8PubMedCrossRefGoogle Scholar
  16. 16.
    Tomoe Y, Segawa H, Shiozawa K et al. (2010) Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Am J Physiol Renal Physiol 298: F1341–50PubMedCrossRefGoogle Scholar
  17. 17.
    Biber J (1989) Cellular aspects of proximal tubular phosphate reabsorption. Kidney Int 36: 360–5PubMedCrossRefGoogle Scholar
  18. 18.
    Marks J, Debnam ES, Unwin RJ (2010) Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 299: F285–96PubMedCrossRefGoogle Scholar
  19. 19.
    Delanaye P, Krzesinski JM (2005) News about phosphorus metabolism. Rev Med Liege 60: 1889–97Google Scholar
  20. 20.
    Walton RJ, Bijvoet OL (1975) Nomogram for derivation of renal threshold phosphate concentration. Lancet 2: 309–10PubMedCrossRefGoogle Scholar
  21. 21.
    Ritthaler T, Traebert M, Lötscher M, Biber J, Murer H, Kaissling (1999) Effects of phosphate intake on dstribution of type I Na/Pi cotransporter mRNA in rat kidney. Kidney Int 55: 976–83PubMedCrossRefGoogle Scholar
  22. 22.
    Quarles LD (2008) Endocrine functions of bone in mineral metabolism regulation. J Clin Invest 118: 3820–8PubMedCrossRefGoogle Scholar
  23. 23.
    Nakai K, Komaba H, Fukagawa M (2010) New insights into the role of fibroblast growth factor 23 in chronic kidney disease. J Nephrol 23: 619–25PubMedGoogle Scholar
  24. 24.
    Geerse DA, Bindels AJ, Kuiper MA, Roos AN, Spronk PE, Schultz MJ (2010) Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care 14: R147PubMedCrossRefGoogle Scholar
  25. 25.
    Tonelli M, Pannu N, Manns B (2010) Oral phosphate binders in patients with kidney failure. N Engl J Med 362: 1312–24PubMedCrossRefGoogle Scholar
  26. 26.
    Amanzadeh J, Reilly RF Jr (2006) Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol 2: 136–48PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen J, Kogan A, Sahar G, Lev S, Vidne B, Singer P (2004) Hypophosphatemia following open heart surgery: incidence and consequences. Eur J Cardiothorac Surg 26: 306–10PubMedCrossRefGoogle Scholar
  28. 28.
    Buell JF, Berger AC, Plotkin JS, Kuo PC, Johson LB (1998) The clinical implications of hypophosphatemia following major hepatic resection or cryosurgery. Arch Surg 133: 757–61PubMedCrossRefGoogle Scholar
  29. 29.
    Daily WH, Tonnesen AS, Allen SJ (1990) Hypophosphatemia-incidence, etiology, and prevention in the trauma patient. Crit Care Med 18: 1210–4PubMedCrossRefGoogle Scholar
  30. 30.
    Berger MM, Rothen C, Cavadini C, Chioléro RL (1997) Exsudative mineral losses after serious burns: a clue to the alterations of magnesium and phosphate metabolism. Am J Clin Nutr 65: 1473–81PubMedGoogle Scholar
  31. 31.
    Polderman KH, Bloemers FW, Peerdeman SM, Girbes AR (2000) Hypomagnesemia and hypophosphatemia at admission in patients with severe head injury. Crit Care Med 28: 2022–5PubMedCrossRefGoogle Scholar
  32. 32.
    Kruse JA, Al-Douahji M, Carlson RW (1992) Hypophosphatemia in critically ill patients: incidence and associations. Crit Care Med 20: s107CrossRefGoogle Scholar
  33. 33.
    Sedlacek M, Schoolwerth AC, Remillard BD (2006) Electrolytes disturbances in the intensive care unit. Sem Dialysis 19: 496–501CrossRefGoogle Scholar
  34. 34.
    Salem RR, Tray K (2005) Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Ann Surg 241: 343–8PubMedCrossRefGoogle Scholar
  35. 35.
    Marik PE, Bedigian MK (1996) Refeeding hypophosphatemia in critically ill patients in an intensive care unit. A prospective study. Arch Surg 131: 1043–7PubMedGoogle Scholar
  36. 36.
    Ravenscroft AJ, Valentine JM, Knappett PA (1999) Severe hypophosphatemia and insulin resistance in diabetic ketoacidosis. Anaesthesia 54: 198PubMedCrossRefGoogle Scholar
  37. 37.
    Wilson HK, Keuer SP, Lea AS, Boyd AE, Eknoyan G (1982) Phosphate therapy in diabetic ketoacidosis. Arch Intern Med 142: 517–20PubMedCrossRefGoogle Scholar
  38. 38.
    Barak V, Schwartz A, Kalickman I, Nisman B, Gurman G, Shoenfeld Y (1998) Prevalence of hypophosphatemia in sepsis and infection: the role of cytokines. Am J Med 104: 40–7PubMedCrossRefGoogle Scholar
  39. 39.
    Shor R, Halabe A, Rishver S et al. (2006) Severe hypophosphatemia in sepsis as a mortality predictor. Ann Clin Lab Sci 36: 67–72PubMedGoogle Scholar
  40. 40.
    The VA/NIH Acute Renal Failure Trial Network (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359: 7–20CrossRefGoogle Scholar
  41. 41.
    The Renal Replacement Therapy Study Investigators (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361: 1627–38CrossRefGoogle Scholar
  42. 42.
    Fall P, Szerlip HM (2010) Continuous renal replacement therapy: cause and treatment of electrolyte complications. Semin Dial 23: 581–5PubMedCrossRefGoogle Scholar
  43. 43.
    Hoffman M, Zemlin AE, Meyer WP, Erasmus RT (2008) Hypophosphataemia at a large academic hospital in South Africa. J Clin Pathol 61: 1104–7CrossRefGoogle Scholar
  44. 44.
    O’Connor LR, Wheeler WS, Bethune JE (1977) Effect of hypophosphatemia on myocardial performance in man. N Engl J Med 297: 901–3PubMedCrossRefGoogle Scholar
  45. 45.
    Knochel JP (1980) Hypophosphatemia in the alcoholic. Arch Intern Med 140: 613–5PubMedCrossRefGoogle Scholar
  46. 46.
    Singhal PC, Kumar A, Desroches L, Gibbons N, Mattana J (1992) Prevalence and predictors of rhabdomyolysis in patients with hypophosphatemia. Am J Med 92: 458–64PubMedCrossRefGoogle Scholar
  47. 47.
    Falcone N, Compagnoni A, Meschini C, Perrone C, Nappo A (2004) Central pontine myelinolysis induced by hypophosphatemia following Wernicke’s encephalopthy. Neurol Sci 24: 407–10PubMedCrossRefGoogle Scholar
  48. 48.
    Schwartz A, Gurman G, Cohen G et al. (2002) Association between hypophosphatemia and cardiac arrhythmias in the early stages of sepsis. Eur J Intern Med 13: 434PubMedCrossRefGoogle Scholar
  49. 49.
    Aubier M, Murciano D, Lecocguic Y et al. (1985) Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med 313: 420–4PubMedCrossRefGoogle Scholar
  50. 50.
    Gravelyn TR, Brophy N, Siegert C, Peters-Golden M (1988) Hypophosphatemia-associated respiratory muscle weakness in a general inpatient population. Am J Med 84: 870–6PubMedCrossRefGoogle Scholar
  51. 51.
    Marinella MA (2005) Refeeding syndrome and hypophosphatemia. J Intensive Care Med 20: 155–9PubMedCrossRefGoogle Scholar
  52. 53.
    Prié D, Ravery V, Boccon-Gibod L, Friedlander G (2001) Frequency of renal phosphate leak among with calcium nephrolithiasis. Kidney Int 60: 272–6PubMedCrossRefGoogle Scholar
  53. 54.
    Kraft MD, Btaiche IF, Sacks GS, Kudsk KA (2005) Treatment of electrolytes disorders in adult patients in the intensive care unit. Am J Health Syst Pharm 62: 1663–82PubMedCrossRefGoogle Scholar
  54. 55.
    Brown KA, Diockerson RN, Morgan LM, Alexander KH, Minard G, Brown RO (2006) A new graduated dosing regimen for phosphorus replacement in patients receiving nutrition support. J Parenter Enteral Nutr 30: 209–14CrossRefGoogle Scholar
  55. 56.
    Taylor BE, Huey WY, Buchman TG, Boyle WA, Coopersmith CM (2004) Treatment of hypophosphatemia using a protocol based on patient weight and serum phosphorus level in a surgical intensive care unit. J Am Coll Surg 198: 198–204PubMedCrossRefGoogle Scholar
  56. 57.
    Charron T, Bernard F, Shrobik Y, Simoneau N, Gagnon N, Leblanc M (2003) Intravenous phosphate in the intensive care unit: more aggressive repletion regimens for moderate and severe hypophosphatemia. Intensive Care Med 29: 1273–8PubMedCrossRefGoogle Scholar
  57. 58.
    Perreault MM, Ostrop NJ, Tierney mg (1997) Efficacy and safety of intravenous phosphate replacement in critically ill patients. Ann Pharmacother 31: 683–8PubMedGoogle Scholar
  58. 59.
    Rosen GH, Boullata JI, O’Rangers EA, Enow NB, Shin B (1995) Intravenous phosphare repletion regimen for critically ill patients with moderate hypophosphatemia. Crit Care Med 23: 1204–10PubMedCrossRefGoogle Scholar
  59. 60.
    Kruse JA, Al-Douahji M, Carlson RW (1992) Rapid intravenous phosphate replacement in critically ill patients. Crit Care Med 20: s107CrossRefGoogle Scholar
  60. 61.
    Kestenbaum B, Sampson JN, Rudser KD et al. (2005) Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16: 520–8PubMedCrossRefGoogle Scholar
  61. 62.
    Connolly GM, Cunningham R, McNamee PT, Young IS, Maxwell AP (2009) Elevated serum phosphate predicts mortality in renal transplant recipients. Transplantation 87: 1040–4PubMedCrossRefGoogle Scholar
  62. 63.
    Dhingra R, Sullivan LM, Fox CS et al. (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167: 879–85PubMedCrossRefGoogle Scholar
  63. 64.
    Tonelli M, Curhan G, Pfeffer M et al. (2009) Relation between alkaline phosphatase, serum phosphate, and all-cause of cardiovascular mortality. Circulation 120: 1784–92PubMedCrossRefGoogle Scholar
  64. 65.
    Goodman WG (2005) Calcium and phosphorus metabolism in patients who have chronic kidney disease. Med Clin North Am 89: 631–47PubMedCrossRefGoogle Scholar
  65. 66.
    London G, Coyne D, Hruska K, Malluche HH, Martin KJ (2010) The new kidney disease: improving global outcomes (KDIGO) guidelines — expert clinical focus on bone and vascular calcification. Clin Nephrol 74: 423–32PubMedGoogle Scholar
  66. 67.
    Spasovski G, Massy Z, Vanholder R (2009) Phosphate metabolism in chronic kidney disease: from pathophysiology to clinical management. Semin Dial 22: 357–62PubMedCrossRefGoogle Scholar
  67. 68.
    Covic A, Kothawala P, Bernal M, Robbins S, Challan A, Goldsmith D (2009) Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease. Nephrol Dial Transplant 24: 1506–23PubMedCrossRefGoogle Scholar
  68. 69.
    Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM (2004) Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 15: 2208–18PubMedCrossRefGoogle Scholar
  69. 70.
    Gutierrez OM, Januzzi JL, Isakowa T et al. (2009) Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 119: 2545–52PubMedCrossRefGoogle Scholar
  70. 71.
    Parker BD, Schugers LJ, Brandenburg VM et al. (2010) The associations of fibroblast growth factor 23 and uncarboxylated matrix Gia protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med 152: 640–8PubMedGoogle Scholar
  71. 72.
    Qazi RA, Martin KJ (2010) Vitamin D in kidney disease: pathophysiology and the utility of treatment. Endocrinol Metab Clin North Am 39: 355–63PubMedCrossRefGoogle Scholar
  72. 73.
    Moe S, Drüeke T, Cunningham J, Goodman W et al. (2006) Definition, evaluation and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int 69: 1945–53PubMedGoogle Scholar
  73. 74.
    Mason MA, Shepler BM (2010) Evaluation of morbidity and mortality data related to cardiovascular calcification from calcium-containing phosphate binder use in patients undergoing hemodialysis. Pharmacotherapy 30: 741–8PubMedCrossRefGoogle Scholar
  74. 75.
    Melamed ML, Eustace JA, Plantinga L et al. (2006) Changes in serum calcium, phosphate and PTH, and the risk of death in incident dialysis patients: a longitudinal study. Kidney Int 70: 351–7PubMedCrossRefGoogle Scholar
  75. 76.
    Gutierrez OM, Mannstadt M, Isakova T et al. (2008) Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 359: 584–92PubMedCrossRefGoogle Scholar
  76. 77.
    Jean G, Terrat JC, Vanel T et al. (2009) High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant 24: 2792–7PubMedCrossRefGoogle Scholar
  77. 78.
    Kandula P, Dobre M, Schold JD, Schreiber MJ Jr, Mehrotra R, Navaneethan SD (2011) Vitamin D suplementation in chronic kidney disease: a systematic review and meta-analysis of observational studies and randomized controlled trials. Clin J Am Soc Nephrol 6: 50–62PubMedCrossRefGoogle Scholar
  78. 79.
    Navaneethan SD, Palmer SC, Craig JC, Elder GJ, Strippoli GF (2009) Benefits and harms of phosphate binders in CKD: a systematic review of randomized controlled trials. Am J Kidney Dis 54: 619–37PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2011

Authors and Affiliations

  • C. Ichai

There are no affiliations available

Personalised recommendations