Advertisement

Oxygène, stress oxydant

  • J.-C. Orban
Part of the Le point sur ... book series (POINT)

Résumé

L’oxygène est un composé structurel et fonctionnel indispensable á la vie. Évoquer la toxicité de cette molécule essentielle peut paraÎtre inapproprié voire provocateur. Pourtant, peu après sa découverte par Priestley en 1774, le nom d’oxygène lui fut donné par Lavoisier á partir du grec oxys et gennan signifiant « qui génère de l’acide ». Dans le même temps, ce dernier mettait en évidence son rôle essentiel dans la respiration. Cela soulignait d’emblée la dualité de cette molécule á laquelle le vivant a dû s’adapter. En effet, dans certaines conditions particulières, l’oxygène peut s’avérer délétère en raison de son caractère oxydant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Favier A (2006) Stress oxydant et pathologie humaine. Ann Pharm Fr 64: 390–6PubMedCrossRefGoogle Scholar
  2. 2.
    Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 30: 620–50PubMedCrossRefGoogle Scholar
  3. 3.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82: 47–95PubMedGoogle Scholar
  4. 4.
    Levraut J, Iwase H, Shao ZH, Vanden Hoek TL, Schumacker PT (2003) Cell death during ischemia: relationship to mitochondrial depolarization and ROS generation. Am J Physiol Heart Circ Physiol 284: 549–58Google Scholar
  5. 5.
    Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38: 291–300PubMedCrossRefGoogle Scholar
  6. 6.
    Vanden Hoek TL (2002) Preconditioning and postresuscitation injury. Crit Care Med 30: S172–5CrossRefGoogle Scholar
  7. 7.
    Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232: 3–14PubMedCrossRefGoogle Scholar
  8. 8.
    Lebuffe G, Schumacker PT, Shao ZH, Anderson T, Iwase H, Vanden Hoek TL (2003) ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol 284: H299–308PubMedGoogle Scholar
  9. 9.
    Halliwell B, Gutteridge JM (1988) Free radicals and antioxidants protection: mechanisms and significance in toxicology and disease. Hum Toxicol 7: 7–13PubMedCrossRefGoogle Scholar
  10. 10.
    Fridovich I (1995) Superoxide radical and superoxide dismutases. Ann Rev Biochem 64: 97–112PubMedCrossRefGoogle Scholar
  11. 11.
    Richier S, Merle PL, Furla P, Pigozzi D, Sola F, Allemand D (2003) Characterization of superoxide dismutases in anoxia-and hyperoxia-tolerant symbiotic cnidarians. Biochim Biophys Acta 1621: 84–91PubMedCrossRefGoogle Scholar
  12. 12.
    Schnackenberg CG, Welch WJ, Wilcox CS (1998) Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 32: 59–64PubMedGoogle Scholar
  13. 13.
    Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF (1999) Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274: 13908–14PubMedCrossRefGoogle Scholar
  14. 14.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107: 1058–70PubMedCrossRefGoogle Scholar
  15. 15.
    Briones AM, Touyz RM (2010) Oxidative stress and hypertension: current concepts. Curr Hypertens Rep 12: 135–42PubMedCrossRefGoogle Scholar
  16. 16.
    Khaper N, Bryan S, Dhingra S et al. (2010) Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 13: 1033–49PubMedCrossRefGoogle Scholar
  17. 17.
    Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G (2010) Oxidative stress and aging. J Nephrol 23: S29–36Google Scholar
  18. 18.
    Laplace C, Huet O, Vicaut E, Ract C, Martin L, Benhamou D, Duranteau J (2005) Endothelial oxidative stress induced by serum from patients with severe trauma hemorrhage. Intensive Care Med 31: 1174–80PubMedCrossRefGoogle Scholar
  19. 19.
    Huet O, Obata R, Aubron C et al. (2007) Plasma-induced endothelial oxidative stress is related to the severity of septic shock. Crit Care Med 35: 821–6PubMedCrossRefGoogle Scholar
  20. 20.
    Fläring UB, Rooyackers OE, Hebert C, Bratel T, Hammarqvist F, Wernerman J (2005) Temporal changes in whole-blood and plasma glutathione in ICU patients with multiple organ failure. Intensive Care Med 31: 1072–8PubMedCrossRefGoogle Scholar
  21. 21.
    Motoyama T, Okamoto K, Kukita I, Hamaguchi M, Kinoshita Y, Ogawa H (2003) Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Crit Care Med 31: 1048–52PubMedCrossRefGoogle Scholar
  22. 22.
    Carpenter CT, Price PV, Christman BW (1998) Exhaled breath condensate isoprostanes are elevated in patients with acute lung injury or ARDS. Chest 114: 1653–9PubMedCrossRefGoogle Scholar
  23. 23.
    Quinlan GJ, Lamb NJ, Evans TW, Gutteridge JM (1996) Plasma fatty acid changes and increased lipid peroxidation in patients with adult respiratory distress syndrome. Crit Care Med 24: 241–6PubMedCrossRefGoogle Scholar
  24. 24.
    Lamb NJ, Quinlan GJ, Westerman ST, Gutteridge JM, Evans TW (1999) Nitration of proteins in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome receiving inhaled nitric oxide. Am J Respir Crit Care Med 160: 1031–4PubMedGoogle Scholar
  25. 25.
    Quinlan GJ, Mumby S, Martin GS, Bernard GR, Gutteridge JM, Evans TW (2004) Albumin influences total plasma antioxidant capacity favorably in patients with acute lung injury. Crit Care Med 32: 755–9PubMedCrossRefGoogle Scholar
  26. 26.
    Asano T (1999) Oxyhemoglobin as the principal cause of cerebral vasospasm: a holistic view of its actions. Crit Rev Neurosurg 24: 303–18CrossRefGoogle Scholar
  27. 27.
    Polidori MC, Mecocci P, Frei B (2001) Plasma vitamin C levels are decreased and correlated with brain damage in patients with intracranial hemorrhage or head trauma. Stroke 32: 898–902PubMedCrossRefGoogle Scholar
  28. 28.
    Gaetani P, Pasqualin A, Rodriguez y Baena R, Borasio E, Marzatico F (1998) Oxidative stress in the human brain after subarachnoid hemorrhage. J Neurosurg 89: 748–54PubMedCrossRefGoogle Scholar
  29. 29.
    Déroche D, Orban JC, Garrel C, Ferrari P, Levraut J, Ichai C (2009) Evaluation du stress oxydant après cardiaque extra-hospitalier traité par hypothermie. Ann Fr Anesth Réanim 28: S170Google Scholar
  30. 30.
    Kilgannon JH, Jones AE, Shapiro NI et al.; Emergency Medicine Shock Research Network (EMShockNet) Investigators (2010) Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 303: 2165–71Google Scholar
  31. 31.
    Mathru M, Dries DJ, Barnes L, Tonino P, Sukhani R, Rooney MW (1996) Tourniquet-induced exsanguination in patients requiring lower limb surgery. An ischemia-reperfusion model of oxidant and antioxidant metabolism. Anesthesiology 84: 14–22PubMedCrossRefGoogle Scholar
  32. 32.
    Kretzschmar M, Klein U, Palutke M, Schirrmeister W (1996) Reduction of ischemia-reperfusion syndrome after abdominal aortic aneurysmectomy by N-acetylcysteine but not mannitol. Acta Anaesthesiol Scand 40: 657–64PubMedCrossRefGoogle Scholar
  33. 33.
    Basu S, Meisert I, Eggensperger E, Krieger E, Krenn CG (2007) Time course and attenuation of ischaemia-reperfusion induced oxidative injury by propofol in human renal transplantation. Redox Rep 12: 195–202PubMedCrossRefGoogle Scholar
  34. 34.
    Biernacki M, Bigda J, Jankowski K, Wozniak M, Sledziński Z (2002) Increased serum levels of markers of oxidative stress during kidney transplantation. Transplant Proc 34: 544–5PubMedCrossRefGoogle Scholar
  35. 35.
    Hassan L, Bueno P, Ferrón-Celma I et al. (2005) Time course of antioxidant enzyme activities in liver transplant recipients. Transplant Proc 37: 3932–5PubMedCrossRefGoogle Scholar
  36. 36.
    Emet S, Memis D, Pamukçu Z (2004) The influence of N-acetyl-L-cystein infusion on cytokine levels and gastric intramucosal pH during severe sepsis. Crit Care 8: 172–9CrossRefGoogle Scholar
  37. 37.
    Spapen H, Zhang H, Demanet C, Vleminckx W, Vincent JL, Huyghens L (1998) Does N-acetyl-L-cysteine influence cytokine response during early human septic shock? Chest 113: 1616–24PubMedCrossRefGoogle Scholar
  38. 38.
    Ortolani O, Conti A, De Gaudio AR, Moraldi E, Cantini Q, Novelli G (2000) The effect of glutathione and N-acetylcysteine on lipoperoxidative damage in patients with early septic shock. Am J Respir Crit Care Med 161: 1907–11PubMedGoogle Scholar
  39. 39.
    Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343: 180–4PubMedCrossRefGoogle Scholar
  40. 40.
    Ho KM, Morgan DJ (2009) Meta-analysis of N-acetylcysteine to prevent acute renal failure after major surgery. Am J Kidney Dis 53: 33–40PubMedCrossRefGoogle Scholar
  41. 42.
    Crimi E, Liguori A, Condorelli M et al. (2004) The beneficial effects of antioxidant supplementation in enteral feeding in critically ill patients: a prospective, randomized, double-blind, placebo-controlled trial. Anesth Analg 99: 857–63PubMedCrossRefGoogle Scholar
  42. 43.
    Nathens AB, Neff MJ, Jurkovich GJ et al. (2002) Randomized, prospective trial of antioxidant supplementation in critically ill surgical patients. Ann Surg 236: 814–22PubMedCrossRefGoogle Scholar
  43. 44.
    Collier BR, Giladi A, Dossett LA, Dyer L, Fleming SB, Cotton BA (2008) Impact of high-dose antioxidants on outcomes in acutely injured patients. JPEN J Parenter Enteral Nutr 3: 384–8CrossRefGoogle Scholar
  44. 45.
    Cheng YJ, Wang YP, Chien CT, Chen CF (2002) Small-dose propofol sedation attenuates the formation of reactive oxygen species in tourniquet-induced ischemia-reperfusion injury under spinal anesthesia. Anesth Analg 94: 1617–20PubMedGoogle Scholar
  45. 46.
    Vanden Hoek T, Becker LB, Shao ZH, Li CQ, Schumacker PT (2000) Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. Circ Res 86: 541–8Google Scholar
  46. 47.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124–36PubMedCrossRefGoogle Scholar
  47. 48.
    Wu ZK, Tarkka MR, Pehkonen E, Kaukinen L, Honkonen EL, Kaukinen S (2000) Ischaemic preconditioning has a beneficial effect on left ventricular haemodynamic function after a coronary artery biopass grafting operation. Scand Cardiovasc J 34: 247–53PubMedCrossRefGoogle Scholar
  48. 49.
    Wu ZK, Iivainen T, Pehkonen E, Laurikka J, Tarkka MR (2002) Ischemic preconditioning suppresses ventricular tachyarrhythmias after myocardial revascularization. Circulation 106: 3091–6PubMedCrossRefGoogle Scholar
  49. 50.
    Hausenloy DJ, Mwamure PK, Venugopal V et al. (2007) Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet 370: 575–9PubMedCrossRefGoogle Scholar
  50. 51.
    Zaugg M, Lucchinetti E, Spahn DR, Pasch T, Schaub MC (2002) Volatile anesthetics mimic cardiac preconditioning by priming the activation of mitochondrial K(ATP) channels via multiple signaling pathways. Anesthesiology 97: 4–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2011

Authors and Affiliations

  • J.-C. Orban

There are no affiliations available

Personalised recommendations