Advertisement

Ischémie cér ébrale: Physiopathologie, diagnostic et traitement

  • L. Velly
  • L. Pellegrini
  • N. Bruder
Part of the Le point sur ... book series (POINT)

Résumé

Dans les pays industrialisés, les accidents vasculaires cérébraux (AVC) représentent la 3e cause de mortalité après les cardiopathies et les cancers, et la 1re cause de handicap acquis de l’adulte (1). Il est désormais établi que l’AVC doit être considéré comme une urgence médicale. Chaque année en France, environ 130 000 patients sont victimes d’un AVC. Parmi eux, on estime schématiquement que 30 000 vont mourir dans les jours ou mois qui suivent et 60 000 vont garder un handicap de sévérité variable. Les AVC ischémiques ou infarctus cérébraux représentent 85 % des AVC (2). La prise en charge des AVC est aujourd’hui une urgence neurologique absolue. Il est important de connaÎtre les principales étapes décisionnelles pour évaluer les patients ayant une ischémie cérébrale évoluant depuis moins de 4 heures et pouvant bénéficier d’un traitement thrombolytique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and casefatality in the late 20th century. Lancet Neurol 2: 43–53PubMedCrossRefGoogle Scholar
  2. 2.
    Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF (2001) Spontaneous intracerebral hemorrhage. N Engl J Med 344: 1450–60PubMedCrossRefGoogle Scholar
  3. 3.
    Hossman KA (2006) Pathophysiology and therapy of experimental stroke. Cellular & Molecul Neurobiol 26: 1057–83Google Scholar
  4. 4.
    Vernooij MW, van der Lugt A, Ikram MA et al. (2008) Total cerebral blood flow and total brain perfusion in the general population: the Rotterdam Scan Study. J Cereb Blood Flow Metab 28: 412–9PubMedCrossRefGoogle Scholar
  5. 5.
    Bandera E, Botteri M, Minelli C, Sutton A, Abrams KR, Latronico N (2006) Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke: a systematic review. Stroke 37: 1334–9PubMedCrossRefGoogle Scholar
  6. 6.
    Cunningham AS, Salvador R, Coles JP et al. (2005) Physiological thresholds for irreversible tissue damage in contusional regions following traumatic brain injury. Brain 128: 1931–42PubMedCrossRefGoogle Scholar
  7. 7.
    Coles JP, Cunningham AS, Salvador R et al. (2009) Early metabolic characteristics of lesion and nonlesion tissue after head injury. J Cereb Blood Flow Metab 29: 965–75PubMedCrossRefGoogle Scholar
  8. 8.
    Leclerc X, Fichten A, Gauvrit JY et al. (2002) Symptomatic vasospasm after subarachnoid haemorrhage: assessment of brain damage by diffusion and perfusion-weighted MRI and single-photon emission computed tomography. Neuroradiology 44: 610–6PubMedCrossRefGoogle Scholar
  9. 9.
    Jabre A, Babikian V, Powsner RA, Spatz EL (2002) Role of single photon emission computed tomography and transcranial Doppler ultrasonography in clinical vasospasm. J Clin Neurosci 9: 400–3PubMedCrossRefGoogle Scholar
  10. 10.
    Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P (2003) Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage J. Neurosurg 98: 1227–34CrossRefGoogle Scholar
  11. 11.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22: 391–7PubMedCrossRefGoogle Scholar
  12. 12.
    Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacoly 55: 310–8CrossRefGoogle Scholar
  13. 13.
    Hata R, Maeda K, Hermann D, Mies G, Hossmann KA (2000) Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 20: 937–46PubMedCrossRefGoogle Scholar
  14. 14.
    Olney JW (1986) Inciting excitotoxic cytocide among central neurons. Adv Exper Med Biol 203: 631–45Google Scholar
  15. 15.
    Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–74PubMedCrossRefGoogle Scholar
  16. 16.
    Graham SH, Shirashi K, Panter SS, Simon RP, Faden AI (1990) Changes in extracellular amino acid neurotransmitters produced by focal cerebral ischemia. Neurosci Lett 110: 124–30PubMedCrossRefGoogle Scholar
  17. 17.
    Castillo J, Davalos A, Naveiro J, Noya M (1996) Neuroexcitatory amino acids and their relation to infarct size and neurological deficit in ischemic stroke. Stroke 27: 1060–5PubMedCrossRefGoogle Scholar
  18. 18.
    Jehle T, Lagrèze WA, Blauth E et al. (2000) Gabapentin-lactam (8-aza-spiro(5,4)decan-9-on; GBP-L) inhibits oxygen glucose deprivation-induced (3H)glutamate release and is a neuroprotective agent in a model of acute retinal ischemia. Naunyn-Schmiedeberg’s Arch Pharmacol 362: 74–81CrossRefGoogle Scholar
  19. 19.
    Jabaudon D, Scanziani M, Gähwiler BH, Gerber U (2000) Acute decrease in net glutamate uptake during energy deprivation. PNAS 97: 5610–5PubMedCrossRefGoogle Scholar
  20. 20.
    Neumar RW (2000) Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med 36: 483–506PubMedGoogle Scholar
  21. 21.
    Siesjo BK (1994) Calcium-mediated processus in neuronal degeneration. Ann NY Acad Sci 747: 140–61PubMedCrossRefGoogle Scholar
  22. 22.
    Bonde C, Noraberg J, Noer H, Zimmer J (2005) Ionotropic glutamate receptors andglutamate transporters are involved in necrotic neuronal cell death induced by oxygenglucose deprivation of hippocampal slice cultures. Neurosciences 136: 779–94CrossRefGoogle Scholar
  23. 23.
    Pettigrew L, Holtz S, Craddocak S, Minger N, Geddes J (1996) Microtubular proteolysis in focal cerebral ischemia. J Cereb Blood Flow Metab 16: 1189–1202PubMedCrossRefGoogle Scholar
  24. 24.
    Zhang, Y, Sun G (1995) Free fatty acids, neutral glycerides and phosphoglycerides in transient focal ischemia. J Neurochem 64: 1688–95PubMedCrossRefGoogle Scholar
  25. 25.
    Sapirstein A, Bonventre JV (2000) Phospholipases A2 in ischemic and toxic brain injury. Neurochem Res 25: 745–53PubMedCrossRefGoogle Scholar
  26. 26.
    Solenski N, Kwan AL, Yanamoto H, Bennett JP, Kassell NF, Lee KS (1997) Differential hydroxylation of salicylate in core and penumbra regions during focal reversible cerebral ischemia. Stroke 28: 2545–52PubMedCrossRefGoogle Scholar
  27. 27.
    Hallenbeck JM, Dutka AJ (1990) Background review and current concepts of reperfusion injury. Arch Neurol 47: 1245–54PubMedGoogle Scholar
  28. 28.
    Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70: 200–14PubMedCrossRefGoogle Scholar
  29. 29.
    Iadecola C (1997) Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 20: 132–9PubMedCrossRefGoogle Scholar
  30. 30.
    Suh SW, Chen JW, Motamedi M et al. (2000) Evidence that synoptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Res 852: 268–73PubMedCrossRefGoogle Scholar
  31. 31.
    O’Neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20: 252–8PubMedCrossRefGoogle Scholar
  32. 32.
    Frijns CJM, Kappelle LJ (2002) Inflammatory cell adhésion molécules in ischemic cerebrovascular disease. Stroke 33: 2115–22PubMedCrossRefGoogle Scholar
  33. 33.
    Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37: 7–38PubMedCrossRefGoogle Scholar
  34. 34.
    Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22: 367–78PubMedCrossRefGoogle Scholar
  35. 35.
    Badaut J, Brunet JF, Grollimund L et al. (2003) Aquaporin 1 and 4 expression after human acute subarachnoid hemorrhage. Acta Neurochir 86: 495–8CrossRefGoogle Scholar
  36. 36.
    Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129: 1019–27CrossRefGoogle Scholar
  37. 37.
    Payen JF, Fauvage B, Falcon D, Lavagne P (2003) Brain oedema following blood-brain barrier disruption: mechanisms and diagnosis. Ann Fr Anesth Réanim 22: 220–5PubMedCrossRefGoogle Scholar
  38. 38.
    Cosnard G, Duprez T, Grandin C, Smith AM, Munier T, Peeters A (1999) Fast FLAIR sequence for detecting major vascular abnormalities during the hyperacute phase of stroke: a comparison with MR angiography. Neuroradiology 41: 342–6PubMedCrossRefGoogle Scholar
  39. 39.
    Dousset V, Ménégon P, Rouanet F et al. (1999) Ischemic vascular accidents in the acute phase. J Neuroradiol 26: 200–8PubMedGoogle Scholar
  40. 40.
    Davis SM, Donnan GA, Parsons MW et al. (2008) Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (epithet): A placebo-controlled randomised trial. Lancet Neurol 7: 299–309PubMedCrossRefGoogle Scholar
  41. 41.
    Donnan GA, Baron JC, Ma H, Davis SM (2009) Penumbral selection of patients for trials of acute stroke therapy. Lancet Neurol 8: 261–9PubMedCrossRefGoogle Scholar
  42. 42.
    Schlaug G, Benfield A, Baird AE et al. (1999) The ischemic penumbra: operationally defined by diffusion and perfusion MRI. Neurology 53: 1528–37PubMedGoogle Scholar
  43. 43.
    Nabavi DG, Leblanc LM, Baxter B et al. (2001) Monitoring cerebral perfusion after subarachnoid hemorrhage using CT. Neuroradiology 43: 7–16PubMedCrossRefGoogle Scholar
  44. 44.
    Wintermark M, Meuli R, Browaeys P et al. (2007) Comparison of ct perfusion and angiography and mri in selecting stroke patients for acute treatment. Neurology 68: 694–7PubMedCrossRefGoogle Scholar
  45. 45.
    Ronning OM, Guldvog B, Stavem K (2001) The benefit of an acute stroke unit in patients with intracranial haemorrhage: a controlled trial. J Neurol Neurosurg Psychiatry 70: 631–4PubMedCrossRefGoogle Scholar
  46. 46.
    Diringer MN, Edwards DF (2001) Admission to a neurologic-neurosurgical intensive care unit is associated with reduced mortality rate after intracerebral hemorrhage. Crit Care Med 29: 635–40PubMedCrossRefGoogle Scholar
  47. 47.
    The ATLANTIS, ECASS, NINDS rt-PA Study Group Investigators (2004) Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 363: 768–74CrossRefGoogle Scholar
  48. 48.
    Schellinger P, Fiebach J, Mohr A, Ringleb P, Jansen O, Hacke W (2001) Thrombolytic therapy for ischemic stroke-A review. Part I-Intravenous thrombolysis. Crit Care Med 29: 1812–8PubMedCrossRefGoogle Scholar
  49. 49.
    Larrue V, von Kummer RR, Muller A, Bluhmki E (2001) Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian Acute Stroke Study (ECASS II). Stroke 32: 438–41PubMedCrossRefGoogle Scholar
  50. 50.
    Wahlgren N, Ahmed N, Davalos A et al. (2007) Thrombolysis with alteplase for acute ischaemic stroke in the safe implementation of thrombolysis in stroke-monitoring study (SITS-MOST): an observational study. Lancet 369: 275–82PubMedCrossRefGoogle Scholar
  51. 51.
    Kohrmann M, Juttler E, Fiebach JB et al. (2006) MRI versus CT-based thrombolysis treatment within and beyond the 3 h time window after stroke onset: a cohort study. Lancet Neurol 5: 661–7PubMedCrossRefGoogle Scholar
  52. 52.
    Thomalla G, Schwark C, Sobesky Jw et al. (2006) Outcome and symptomatic bleeding complications of intravenous thrombolysis within 6 h in MRI-selected stroke patients: comparison of a German multicenter study with the pooled data of ATLANTIS, ECASS and NINDS tPA trials. Stroke 37: 852–8PubMedCrossRefGoogle Scholar
  53. 53.
    Hacke W, Kaste M, Bluhmki E et al.; ECASS Investigators (2008)Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359: 1317–29PubMedCrossRefGoogle Scholar
  54. 54.
    Wahlgren N, Ahmed N, Dávalos A et al.; SITS investigators (2008)Thrombolysis with alteplase 3–4.5 h after acute ischaemic stroke (SITS-ISTR): an observational study. Lancet 372: 1303–9PubMedCrossRefGoogle Scholar
  55. 55.
    Albers GW, Thijs VN, Wechsler L et al. (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60: 508–17PubMedCrossRefGoogle Scholar
  56. 56.
    Furlan AJ, Eyding D, Albers GW et al.; DEDAS Investigators (2006)Dose Escalation of Desmoteplase for Acute Ischemic Stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 37: 1227–31PubMedCrossRefGoogle Scholar
  57. 57.
    Hacke W, Albers G, Al-Rawi Y et al. (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36: 66–73PubMedCrossRefGoogle Scholar
  58. 58.
    Hacke W, Furlan AJ, Al-Rawi Y et al. (2009) Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): a prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol 8: 141–50PubMedCrossRefGoogle Scholar
  59. 59.
    Khaja AM, Grotta JC (2007) Established treatments for acute ischaemic stroke. Lancet 369: 319–30PubMedCrossRefGoogle Scholar
  60. 60.
    Brekenfeld C, Schroth G, El-Koussy M et al. (2008) Mechanical thromboembolectomy for acute ischemic stroke: comparison of the catch thrombectomy device and the Merci Retriever in vivo. Stroke 39: 1213–9PubMedCrossRefGoogle Scholar
  61. 61.
    Derex L, Adeleine P, Nighoghossian N, Honnorat J, Trouillas P (2002) Factors influencing early admission in a French stroke unit. Stroke 33: 153–9PubMedCrossRefGoogle Scholar
  62. 62.
    Sandercock P, Gubitz G, Foley P, Counsell C (2003) Antiplatelet therapy for acute ischaemic stroke. Cochrane Database Syst Rev 2: CD000029PubMedGoogle Scholar
  63. 63.
    Gray CS, Hildreth AJ, Sandercock PA et al. (2007) Glucose-potassium-insulin infusions in the management of post-stroke hyperglycaemia: the UK glucose insulin in stroke trial (GIST-UK). Lancet Neurol 6: 397–406PubMedCrossRefGoogle Scholar
  64. 64.
    Krieger DW, De Georgia MA, Abou-Chebl A et al. (2001) Cooling for acute ischemic brain damage (cool aid): an open pilot study of induced hypothermia in acute ischemic stroke. Stroke 32: 1847–54PubMedCrossRefGoogle Scholar
  65. 65.
    De Georgia MA, Krieger DW, Abou-Chebl A et al. (2004) Cooling for Acute Ischemic Brain Damage (COOL AID): a feasibility trial of endovascular cooling. Neurology 63: 312–7PubMedGoogle Scholar
  66. 66.
    Adams Jr HP, del Zoppo G, Alberts MJ et al. (2007) Guidelines for the early management of adults with ischemic stroke. Stroke 38: 1655–711PubMedCrossRefGoogle Scholar
  67. 67.
    Hacke W, Kaste M, Bogousslavsky J et al. (2003) European stroke initiative recommendations for stroke management-update 2003. Cerebrovasc Dis 16: 311–37CrossRefGoogle Scholar
  68. 68.
    Ginsberg MD (2009) Current status of neuroprotection for cerebral ischemia: synoptic overview. Stroke 40: S 111–4CrossRefGoogle Scholar
  69. 69.
    Zaleska MM, Mercado ML, Chavez J, Feuerstein GZ, Pangalos MN, Wood A (2009) The development of stroke therapeutics: promising mechanisms and translational challenges. Neuropharmacology 56: 329–41PubMedCrossRefGoogle Scholar
  70. 70.
    Ehrenreich H, Hasselblatt M, Dembowski C et al. (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8: 495–505PubMedGoogle Scholar
  71. 71.
    Ehrenreich H, Weissenborn K, Prange H et al. (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40: e647–56PubMedCrossRefGoogle Scholar
  72. 72.
    Yoshimoto T, Ogawa A, Seki H, Kogure T, Suzuki J (1986) Clinical course of acute middle cerebral artery occlusion. J Neurosurg 65: 326–30PubMedCrossRefGoogle Scholar
  73. 73.
    Ringelstein EB, Biniek R, Weiller C, Ammeling B, Nolte PN, Thron A (1992) Type and extent of hemispheric brain infarctions and clinical outcome in early and delayed middle cerebral artery recanalization. Neurology 42: 289–98PubMedGoogle Scholar
  74. 74.
    Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, Von Kummer R (1996) “Malignant” middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 53: 309–15PubMedGoogle Scholar
  75. 75.
    Von Kummer R, Meyding-Lamadé U, Forsting M, Rosin L, Rieke K, Hacke W (1994) Sensitivity and prognostic value of early CT in occlusion of the middle cerebral artery trunk. AJNR Am J Neuroradiol 15: 9–15Google Scholar
  76. 76.
    Oppenheim C, Samson Y, Manaï R et al. (2000) Prediction of malignant middle cerebral artery infarction by diffusion-weighted imaging. Stroke 31: 2175–81PubMedCrossRefGoogle Scholar
  77. 77.
    Vahedi K, Hofmeijer J, Juettler E et al. (2007) Early decompressive surgery in malignant infarction of the middle cerebral artery: a pooled analysis of three randomised controlled trials. Lancet Neurol 6: 215–22PubMedCrossRefGoogle Scholar
  78. 78.
    Hornig CR, Rust DS, Busse O, Jauss M, Laun A (1994) Spaceoccupying cerebellar infarction. Clinical course and prognosis. Stroke 25: 372–4PubMedCrossRefGoogle Scholar
  79. 79.
    Cioffi FA, Bernini FP, Punzo A, D’Avanzo R (1985) Surgical management of acute cerebellar infarction. Acta Neurochir (Wien) 74: 105–12CrossRefGoogle Scholar
  80. 80.
    Laun A, Busse O, Calatayud V, Klug N (1984) Cerebellar infarcts in the area of the supply of the PICA and their surgical treatment. Acta Neurochir (Wien) 71: 295–306CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2011

Authors and Affiliations

  • L. Velly
  • L. Pellegrini
  • N. Bruder

There are no affiliations available

Personalised recommendations