Advertisement

Techniques de suppléance de l’insuffisance rénale aiguë

  • V. Chhor
  • D. Journois
Part of the Le point sur ... book series (POINT)

Résumé

L’hémodialyse intermittente et la dialyse péritonéale représentaient l’essentiel des épurations extrarénales effectuées en réanimation jusque dans les années 1970. De nouvelles techniques d’épuration continue sont apparues et se sont progressivement imposées comme méthode thérapeutique pour la prise en charge de l’insuffisance rénale aiguë (1). Actuellement, l’hémofiltration continue (HFC), qui repose sur des échanges convectifs contrairement à l’hémodialyse qui fonctionne par un mécanisme diffusif, est la technique de suppléance rénale la plus utilisée en réanimation lors d’une agression rénale aiguë (ARA) classiquement appelée insuffisance rénale aiguë. Cependant, le choix entre les deux techniques repose essentiellement sur des préférences individuelles, de sorte que la question d’un choix étayé entre HFC et HDI reste difficile.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Kramer P, Wigger W, Rieger J, Matthaei D, Scheler F (1977) Arteriovenous haemofiltration: A new and simple method for treatment of over-hydrated patients resistant to diuretics. Klin Wochenschr 55: 1121–2PubMedCrossRefGoogle Scholar
  2. 2.
    Journois D, Safran D (1991) Continuous hemofiltration: An extrarenal filtration method used in intensive care. Ann Fr Anesth Réanim 10: 379–89PubMedCrossRefGoogle Scholar
  3. 3.
    Bellomo R, Parkin G, Love J, Boyce N (1992) Use of continuous haemodiafiltration: An approach to the management of acute renal failure in the critically ill. Am J Nephrol 12: 240–5PubMedCrossRefGoogle Scholar
  4. 4.
    Brunet S, Leblanc M, Geadah D, Parent D, Courteau S, Cardinal J (1999) Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates. Am J Kidney Dis 34: 486–92PubMedCrossRefGoogle Scholar
  5. 5.
    Marshall MR, Golper TA, Shaver MJ, Alam MG, Chatoth DK (2001) Sustained low-efficiency dialysis for critically ill patients requiring renal replacement therapy. Kidney Int 60: 777–85PubMedCrossRefGoogle Scholar
  6. 6.
    Marshall MR, Ma T, Galler D, Rankin AP, Williams AB (2004) Sustained low-efficiency daily diafiltration (sledd-f) for critically ill patients requiring renal replacement therapy: Towards an adequate therapy. Nephrol Dial Transplant 19: 877–84PubMedCrossRefGoogle Scholar
  7. 7.
    Wu VC, Wang CH, Wang WJ et al. (2010) Sustained low-efficiency dialysis versus continuous veno-venous hemofiltration for postsurgical acute renal failure. Am J Surg 199: 466–76PubMedCrossRefGoogle Scholar
  8. 8.
    Liao Z, Zhang W, Hardy PA et al. (2003) Kinetic comparison of different acute dialysis therapies. Artif Organs 27: 802–7PubMedCrossRefGoogle Scholar
  9. 9.
    Berbece AN, Richardson RM (2006) Sustained low-efficiency dialysis in the icu: Cost, anticoagulation, and solute removal. Kidney Int 70: 963–8PubMedCrossRefGoogle Scholar
  10. 10.
    Gomez A, Wang R, Unruh H et al. (1990) Hemofiltration reverses left ventricular dysfunction during sepsis in dogs. Anesthesiology 73: 671–85PubMedCrossRefGoogle Scholar
  11. 11.
    Journois D, Pouard P, Greeley WJ, Mauriat P, Vouhe P, Safran D (1994) Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Effects on hemostasis, cytokines, and complement components. Anesthesiology 81: 1181–9; discussion 1126A-1127APubMedCrossRefGoogle Scholar
  12. 12.
    Journois D, Israel-Biet D, Pouard P et al. (1996) High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology 85: 965–76PubMedCrossRefGoogle Scholar
  13. 13.
    Bouman CS, Oudemans-Van Straaten HM, Tijssen JG, Zandstra DF, Kesecioglu J (2002) Effects of early high-volume continuous venovenous hemofiltration on survival and recovery of renal function in intensive care patients with acute renal failure: A prospective, randomized trial. Crit Care Med 30: 2205–11PubMedCrossRefGoogle Scholar
  14. 14.
    Honore PM, Jamez J, Wauthier M et al. (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28: 3581–7PubMedCrossRefGoogle Scholar
  15. 15.
    Cole L, Bellomo R, Journois D, Davenport P, Baldwin I, Tipping P (2001) High-volume haemofiltration in human septic shock. Intensive Care Med 27: 978–86PubMedCrossRefGoogle Scholar
  16. 16.
    Leypoldt JK, Frigon RP, Henderson LW (1983) Dextran sieving coefficients of hemofiltration membranes. Trans Am Soc Artif Intern Organs 29: 678–83PubMedGoogle Scholar
  17. 17.
    Hakim RM, Wingard RL, Parker RA (1994) Effect of the dialysis membrane in the treatment of patients with acute renal failure. N Engl J Med 331: 1338–42PubMedCrossRefGoogle Scholar
  18. 18.
    Schiffl H, Lang SM, Konig A, Strasser T, Haider MC, Held E (1994) Biocompatible membranes in acute renal failure: Prospective case-controlled study. Lancet 344: 570–2PubMedCrossRefGoogle Scholar
  19. 19.
    Canaud B, Martin K, Nguessan C, Klouche K, Leray-Loragues H, Beraud JJ (2001) Vascular access for extracorporeal renal replacement therapies in the intensive care unit in clinical practice. Contrib Nephrol 132: 266–22PubMedCrossRefGoogle Scholar
  20. 20.
    van de Wetering J, Westendorp RG, van der Hoeven JG, Stolk B, Feuth JD, Chang PC (1996) Heparin use in continuous renal replacement procedures: The struggle between filter coagulation and patient hemorrhage. J Am Soc Nephrol 7: 145–50PubMedGoogle Scholar
  21. 21.
    Journois D, Chanu D, Pouard P, Mauriat P, Safran D (1990) Assessment of standardized ultrafiltrate production rate using prostacyclin in continuous venovenous hemofiltration. In: H.G. S, H. M, K. SH, eds. Continuous hemofiltration. Basel, Karger: 202–4Google Scholar
  22. 22.
    Hory B, Cachoux A, Toulemonde F (1985) Continuous arteriovenous hemofiltration with low-molecular-weight heparin. Nephron 41: 125PubMedCrossRefGoogle Scholar
  23. 23.
    Reeves JH, Cumming AR, Gallagher L, O’Brien JL, Santamaria JD (1999) A controlled trial of low-molecular-weight heparin (dalteparin) versus unfractionated heparin as anticoagulant during continuous venovenous hemodialysis with filtration. Crit Care Med 27: 2224–8PubMedCrossRefGoogle Scholar
  24. 24.
    Joannidis M, Kountchev J, Rauchenzauner M et al. (2007) Enoxaparin vs. Unfractionated heparin for anticoagulation during continuous veno-venous hemofiltration: A randomized controlled crossover study. Intensive Care Med 33: 1571–9PubMedCrossRefGoogle Scholar
  25. 25.
    Sagedal S, Hartmann A, Osnes K et al. (2006) Intermittent saline flushes during haemodialysis do not alleviate coagulation and clot formation in stable patients receiving reduced doses of dalteparin. Nephrol Dial Transplant 21: 444–9PubMedCrossRefGoogle Scholar
  26. 26.
    Tan HK, Baldwin I, Bellomo R (2000) Continuous veno-venous hemofiltration without anticoagulation in high-risk patients. Intensive Care Med 26: 1652–7PubMedCrossRefGoogle Scholar
  27. 27.
    Kramer L, Bauer E, Joukhadar C et al. (2003) Citrate pharmacokinetics and metabolism in cirrhotic and noncirrhotic critically ill patients. Crit Care Med 31: 2450–5PubMedCrossRefGoogle Scholar
  28. 28.
    Morita Y, Johnson RW, Dorn RE, Hall DS (1961) Regional anticoagulation during hemodialysis using citrate. Am J Med Sci 242: 32–43PubMedCrossRefGoogle Scholar
  29. 29.
    Mehta RL, McDonald BR, Aguilar MM, Ward DM (1990) Regional citrate anticoagulation for continuous arteriovenous hemodialysis in critically ill patients. Kidney Int 38: 976–81PubMedCrossRefGoogle Scholar
  30. 30.
    Palsson R, Niles JL (1999) Regional citrate anticoagulation in continuous venovenous hemofiltration in critically ill patients with a high risk of bleeding. Kidney Int 55: 1991–7PubMedCrossRefGoogle Scholar
  31. 31.
    Morgera S, Schneider M, Slowinski T et al. (2009) A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid-base status. Crit Care Med 37: 2018–24PubMedCrossRefGoogle Scholar
  32. 32.
    Oudemans-van Straaten HM, Bosman RJ, Koopmans M et al. (2009) Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med 37: 545–52PubMedCrossRefGoogle Scholar
  33. 33.
    Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P (2004) Citrate vs. Heparin for anticoagulation in continuous venovenous hemofiltration: A prospective randomized study. Intensive Care Med 30: 260–5PubMedCrossRefGoogle Scholar
  34. 34.
    Hofbauer R, Moser D, Frass M et al. (1999) Effect of anticoagulation on blood membrane interactions during hemodialysis. Kidney Int 56: 1578–83PubMedCrossRefGoogle Scholar
  35. 35.
    Schortgen F, Soubrier N, Delclaux C et al. (2000) Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: Usefulness of practice guidelines. Am J Respir Crit Care Med 162: 197–202PubMedGoogle Scholar
  36. 36.
    Bellomo R, Martin H, Parkin G, Love J, Kearley Y, Boyce N (1991) Continuous arteriovenous haemodiafiltration in the critically ill: Influence on major nutrient balances. Intensive Care Med 17: 399–402PubMedCrossRefGoogle Scholar
  37. 37.
    Schetz M (1997) Drug removal with continous renal replacement therapies. In: Journois D, ed. Continuous hemofiltration in the intensive care unit. Amsterdam, OPA: 69–77Google Scholar
  38. 38.
    Golper TA, Wedel SK, Kaplan AA, Saad AM, Donta ST, Paganini EP (1985) Drug removal during continuous arteriovenous hemofiltration: Theory and clinical observations. Int J Artif Organs 8: 307–12PubMedGoogle Scholar
  39. 39.
    Mehta RL, McDonald B, Gabbai FB et al. (2001) A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int 60: 1154–63PubMedCrossRefGoogle Scholar
  40. 40.
    Augustine JJ, Sandy D, Seifert TH, Paganini EP (2004) A randomized controlled trial comparing intermittent with continuous dialysis in patients with arf. Am J Kidney Dis 44: 1000–7PubMedCrossRefGoogle Scholar
  41. 41.
    Lins RL, Elseviers MM, Van der Niepen P et al. (2009) Intermittent versus continuous renal replacement therapy for acute kidney injury patients admitted to the intensive care unit: Results of a randomized clinical trial. Nephrol Dial Transplant 24: 512–8PubMedCrossRefGoogle Scholar
  42. 42.
    Uehlinger DE, Jakob SM, Ferrari P et al. (2005) Comparison of continuous and intermittent renal replacement therapy for acute renal failure. Nephrol Dial Transplant 20: 1630–7PubMedCrossRefGoogle Scholar
  43. 43.
    Vinsonneau C, Camus C, Combes A et al. (2006) Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: A multicentre randomised trial. Lancet 368: 379–85PubMedCrossRefGoogle Scholar
  44. 44.
    Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R (2008) Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: A meta-analysis. Crit Care Med 36: 610–7PubMedCrossRefGoogle Scholar
  45. 45.
    Ronco C, Bellomo R, Homel P et al. (2000) Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: A prospective randomised trial. Lancet 356: 26–30PubMedCrossRefGoogle Scholar
  46. 46.
    Monti G, Herrera M, Kindgen-Milles D et al. (2007) The dose response multicentre international collaborative initiative (do-re-mi). Contrib Nephrol 156: 434–43PubMedCrossRefGoogle Scholar
  47. 47.
    Brause M, Neumann A, Schumacher T, Grabensee B, Heering P (2003) Effect of filtration volume of continuous venovenous hemofiltration in the treatment of patients with acute renal failure in intensive care units. Crit Care Med 31: 841–6PubMedCrossRefGoogle Scholar
  48. 48.
    Schiffl H, Lang SM, Fischer R (2002) Daily hemodialysis and the outcome of acute renal failure. N Engl J Med 346: 305–10PubMedCrossRefGoogle Scholar
  49. 49.
    Saudan P, Niederberger M, De Seigneux S et al. (2006) Adding a dialysis dose to continuous hemofiltration increases survival in patients with acute renal failure. Kidney Int 70: 1312–7PubMedCrossRefGoogle Scholar
  50. 50.
    Palevsky PM, Zhang JH, O’Connor TZ et al. (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359: 7–20PubMedCrossRefGoogle Scholar
  51. 51.
    Bellomo R, Cass A, Cole L et al. (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361: 1627–38PubMedCrossRefGoogle Scholar
  52. 52.
    Uchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R (2003) Continuous is not continuous: The incidence and impact of circuit «down-time» on uraemic control during continuous veno-venous haemofiltration. Intensive Care Med 29: 575–8PubMedCrossRefGoogle Scholar
  53. 53.
    Honore PM, Joannes-Boyau O, Collin V, Boer W, Gressens B, Janvier G (2008) Gestion pratique de l’épuration extrarénale continue au quotidien. Réanimation 17: 472–7CrossRefGoogle Scholar
  54. 54.
    Bellomo R, Ronco C (1999) Renal replacement therapy in the intensive care unit. Crit Care Resusc 1: 13–24PubMedGoogle Scholar
  55. 55.
    Piccinni P, Dan M, Barbacini S et al. (2006) Early isovolaemic haemofiltration in oliguric patients with septic shock. Intensive Care Med 32: 80–6PubMedCrossRefGoogle Scholar
  56. 56.
    Cole L, Bellomo R, Hart G et al. (2002) A phase ii randomized, controlled trial of continuous hemofiltration in sepsis. Crit Care Med 30: 100–6PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2011

Authors and Affiliations

  • V. Chhor
  • D. Journois

There are no affiliations available

Personalised recommendations