Skip to main content

Abstrait

Les sarcomes cutanés sont des tumeurs malignes issues du tissu conjonctif commun ou spécialisé et du tissu nerveux. Ils peuvent prendre leur origine dans le derme ou dans les tissus cutanés profonds sus- et sousaponévrotiques. Il s’agit de tumeurs qui nécessitent une prise en charge dans des centres spécialisés car elles posent des problèmes difficiles de diagnostic anatomopathologique, d’évaluation pronostique et de stratégie thérapeutique, du fait de leur rareté, de leur diversité histologique et de leur hétérogénéité évolutive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Fletcher CD. The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 2006; 48:3–12.

    Article  PubMed  CAS  Google Scholar 

  2. Fletcher CDU, Unni KK, Mertens F, World Health Organization. International Academy of Pathology. Pathology and genetics of tumours of soft tissue and bone. Lyon, Oxford: IARC Press; 2002.

    Google Scholar 

  3. Clark MA, Fisher C, Judson I et al. Soft-tissue sarcomas in adults. N EnglJ Med 2005; 353:701–711.

    Article  CAS  Google Scholar 

  4. Champeau F, Verola O, Vignon-Pennamen MD. [Cutaneous and subcutaneous sarcomas]. Ann Chir Plast Esthet 1998; 43:421–438.

    PubMed  CAS  Google Scholar 

  5. Mendenhall WM, Zlotecki RA, Scarborough MT. Dermatofibrosarcoma protuberans. Cancer 2004; 101:2503–2508.

    Article  PubMed  Google Scholar 

  6. Sirvent N, Maire G, Pedeutour F. Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 2003; 37:1–19.

    Article  PubMed  CAS  Google Scholar 

  7. Sjobiom T, Shimizu A, O’Brien KP et al. Growth inhibition of dermatofibrosarcoma protuberans tumors by the platelet-derived growth factor receptor antagonist STI571 through induction of apoptosis. Cancer Res 2001; 61:5778–5783.

    Google Scholar 

  8. Greco A, Roccato E, Miranda C et al. Growth-inhibitory effect of STI571 on cells transformed by the COL1A1/PDGFB rearrangement. Int J Cancer 2001; 92:354–360.

    Article  PubMed  CAS  Google Scholar 

  9. Greco A, Fusetti L, Villa R et al Transforming activity of the chimeric sequence formed by the fusion of collagen gene COL1A1 and the platelet derived growth factor b-chain gene in dermatofibrosarcoma protuberans. Oncogene 1998; 17:1313–1319.

    Article  PubMed  CAS  Google Scholar 

  10. Fiore M, Miceli R, Mussi C et al. Dermatofibrosarcoma protuberans treated at a single institution: a surgical disease with a high cure rate. J Clin Oncol 2005; 23:7669–7675.

    Article  PubMed  Google Scholar 

  11. Shimizu A, O’Brien KP, Sjoblom T et al. The dermatofibrosarcoma protuberans-associated collagen type lalphal/platelet-derived growth factor (PDGF) B-chain fusion gene generates a transforming protein that is processed to functional PDGF-BB. Cancer Res 1999; 59:3719–3723.

    PubMed  CAS  Google Scholar 

  12. Rubin BP, Schuetze SM, Eary JF et al. Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 2002; 20:3586–3591.

    Article  PubMed  CAS  Google Scholar 

  13. Maki RG, Awan RA, Dixon RH et al. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int J Cancer 2002; 100:623–626.

    Google Scholar 

  14. Labropoulos SV, Fletcher JA, Oliveira AM et al. Sustained complete remission of metastatic dermatofibrosarcoma protuberans with imatinib mesylate. Anticancer Drugs 2005; 16: 461–466.

    Article  PubMed  CAS  Google Scholar 

  15. McArthur GA, Demetri GD, van Oosterom A et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J Clin Oncol 2005; 23:866–873.

    Article  PubMed  CAS  Google Scholar 

  16. Tos AP. Classification of pleomorphic sarcomas: where are we now? Histopathology 2006; 48:51–62.

    Article  Google Scholar 

  17. Lagace R, Aurias A. [Does malignant fibrous histiocytoma exist?]. Ann Pathol 2002; 22:29–34.

    PubMed  Google Scholar 

  18. Fisher C. Myofibroblastic malignancies. Adv Anat Pathol 2004; 11:190–201.

    Article  PubMed  Google Scholar 

  19. Montgomery E, Goldblum JR, Fisher C. Myofibrosarcoma: a clinicopathologic study. Am J Surg Pathol 2001; 25:219–228.

    Article  PubMed  CAS  Google Scholar 

  20. Panagopoulos I, Storlazzi CT, Fletcher CD et al. The chimeric FUS/CREB312 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer 2004; 40:218–228.

    Article  PubMed  CAS  Google Scholar 

  21. Hallor KH, Mertens F, Jin Y et al. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer 2005; 44:97–102.

    Article  PubMed  CAS  Google Scholar 

  22. Arrigoni G, Doglioni C. Atypical lipomatous tumor: molecular characterization. Curr Opin Oncol 2004; 16:355–358.

    Article  PubMed  Google Scholar 

  23. Binh MB, Sastre-Garau X, Guillou L et al. MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol 2005; 29: 1340–1347.

    Article  PubMed  Google Scholar 

  24. Pentimalli F, Dentice M, Fedele M et al. Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Cancer Res 2003; 63:7423–7427.

    PubMed  CAS  Google Scholar 

  25. Fritz B, Schubert F, Wrobel G et al. Micro-array-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 2002; 62:2993–2998.

    PubMed  CAS  Google Scholar 

  26. Senderowicz AM. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene 2000; 19:6600–6606.

    Article  PubMed  CAS  Google Scholar 

  27. Demetri GD, Fletcher CD, Mueller E et al. Induction of solid tumor differentiation by the peroxisome proliferator activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 1999; 96: 3951–3956.

    Article  PubMed  CAS  Google Scholar 

  28. Debrock G, Vanhentenrijk V, Sciot R et al. A phase II trial with rosiglitazone in liposarcoma patients. Br J Cancer 2003; 89:1409–1412.

    Article  PubMed  CAS  Google Scholar 

  29. Perez-Mancera PA, Sanchez-Garcia I. Understanding mesenchymal cancer: the liposarcoma associated FUS-DDIT3 fusion gene as a model. Semin Cancer Biol 2005; 15:206–214.

    Article  PubMed  CAS  Google Scholar 

  30. Lee YF, John M, Falconer A et al. A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 2004; 64:7201–7204.

    Article  PubMed  CAS  Google Scholar 

  31. Hernando E, Charytonowicz E, Dudas ME et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 2007;;13:748–753.

    Article  PubMed  Google Scholar 

  32. Holst VA, Junkins-Hopkins JM, Elenitsas R. Cutaneous smooth muscle neoplasms: clinical features, histologic findings, and treatment options. J Am Acad Dermatol 2002; 46:477–490; quiz 491-494.

    Article  PubMed  Google Scholar 

  33. Auroy S, Contesso G, Spatz A et al. [Primary cutaneous leiomyosarcoma: 32 cases]. Ann Dermatol Venereal 1999; 126:235–242.

    CAS  Google Scholar 

  34. Weiss SW, Smooth muscle tumors of soft tissue. Adv Anat Pathol 2002; 9:351–359.

    Article  PubMed  Google Scholar 

  35. Svarvar C, Röhling T, Berlin O et al. Clinical course of nonvisceral soft tissue leiomyosar-coma in 225 patients from the Scandinavian Sarcoma Group. Cancer 2007; 109:282 291.

    Article  PubMed  Google Scholar 

  36. Fisher C. Synovial sarcoma. Ann Diagn Pathal 1998; 2:401–421.

    Article  CAS  Google Scholar 

  37. Nielsen TO, West RB, Linn SC et al. Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 2002; 359:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  38. Baird K, Davis S, Antonescu CR et al. Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 2005; 65:9226–9235.

    Article  PubMed  CAS  Google Scholar 

  39. Albritton KH, Randall RL. Prospects for targeted therapy of synovial sarcoma. J Pediatr Hematol Oncol 2005; 27:219–222.

    Article  PubMed  Google Scholar 

  40. Ishibe T, Nakayama T, Okamoto T et al. Disruption of fibroblast growth factor signal pathway inhibits the growth of synovial sarcomas: potential application of signal inhibitors to molecular target therapy. Clin Cancer Res 2005; 11:2702–2712.

    Article  PubMed  CAS  Google Scholar 

  41. Genevay M, Coindre JM, Guillou L. [Recent entities in soft tissue tumor pathology. Part 2]. Ann Pathol 2003; 23:135–148.

    PubMed  Google Scholar 

  42. Folpe AL, Chand EM, Goldblum JRI et al. Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics. Am J Surg Pathol 2001; 25:1061–1066.

    Article  PubMed  CAS  Google Scholar 

  43. Breiteneder-Geleff S, Soleiman A, Kowalski II et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999; 154: 385–394.

    PubMed  CAS  Google Scholar 

  44. Kahn HJ, Bailey D, Marks A. Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod Pathol 2002; 15: 434–440.

    Article  PubMed  Google Scholar 

  45. Xu H, Edwards JR, Espinosa O et al. Expression of a lymphatic endothelial cell marker in benign and malignant vascular tumors. Hum Pathol 2004; 35:857–861.

    Article  PubMed  CAS  Google Scholar 

  46. Komdeur R, Hoekstra HJ, Molenaar WM et al. Clinicopathologic assessment of postradiation sarcomas: KIT as a potential treatment target. Clin Cancer Res 2003; 9:2926–2932.

    PubMed  CAS  Google Scholar 

  47. Mendlick MR, Nelson M, Pickering D et al. Translocation t(l;3)(p363;q25) is a nonrandom aberration in epithelioid hemangioendothelioma. Am J Surg Pathol 2001; 25:684–687.

    Article  PubMed  CAS  Google Scholar 

  48. Segal NH, Pavlidis P, Noble WS et al. Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling. J Clin Oncol 2003; 21:1775–1781.

    Article  PubMed  CAS  Google Scholar 

  49. Mrugala MM, Batchelor TT, Plotkin SR. Peripheral and cranial nerve sheath tumors. Curr Opin Neurol 2005; 18:604–610.

    Article  PubMed  Google Scholar 

  50. Kobayashi C, Oda Y, Takahira T et al. Chromosomal aberrations and microsatellite instability of malignant peripheral nerve sheath tumors: a study of 10 tumors from nine patients. Cancer Genet Cytogenet 2006; 165:98–105.

    Article  PubMed  CAS  Google Scholar 

  51. Miller SJ, Rangwala F, Williams J et al. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res 2006; 66:2584–2591.

    Article  PubMed  CAS  Google Scholar 

  52. Lin PP, Guzel VB, Pisters PW et al. Surgical management of soft tissue sarcomas of the hand and foot. Cancer 2002; 95:852 861.

    PubMed  Google Scholar 

  53. Brennan MF, Casper ES, Harrison LB et al. The role of multimodality therapy in soft-tissue sarcoma. Ann Surg 1991; 214:328–336; discussion 336-8.

    Article  PubMed  CAS  Google Scholar 

  54. Penel N, Bui Nguyen B, Bay JO et al. Weekly paclitaxel in metastatic angiosarcoma. A FNCLCC French Sarcoma Group (GSF-GETO) phase II trial. J Clin Oncol 2007; 25:18S.

    Google Scholar 

  55. Grosso F, Jones RL, Demetri GD et al. Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol 2007; 8:595–602.

    Article  PubMed  CAS  Google Scholar 

  56. Edmonson JH, Ryan LM, Blum RH et al. Randomized comparison of doxorubicin alone versus ifosfamide plus doxorubicin or mitomycin, doxorubicin, and cisplatin against advanced soft tissue sarcomas. J Clin Oncol 1993; 11:1269–1275.

    PubMed  CAS  Google Scholar 

  57. Lorigan P, Verweij J, Papai Z et al. Phase III trial of two investigational schedules of ifosfamide compared with standard-dose doxorubicin in advanced or metastatic soft tissue sarcoma: a European Organisation for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group Study. J Clin Oncol 2007; 25: 3144–3150.

    Article  PubMed  CAS  Google Scholar 

  58. Santoro A, Tursz T, Mouridsen H et al. Doxorubicin versus CYVADIC versus doxorubicin plus ifosfamide in first-line treatment of advanced soft tissue sarcomas: a randomized study of the European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. J Clin Oncol 1995; 13: 1537–1545.

    PubMed  CAS  Google Scholar 

  59. Fata F, O’Reilly E, Ilson D et al. Paclitaxel in the treatment of patients with angiosarcoma of the scalp or face. Cancer 1999; 86:2034–2037.

    Article  PubMed  CAS  Google Scholar 

  60. Le Cesne A, Blay JY, Judson I et al. Phase II study of ET-743 in advanced soft tissue sarcomas: a European Organisation for the Research and Treatment of Cancer (EORTC) soft tissue and bone sarcoma group trial. J Clin Oncol 2005; 23:576–584.

    Article  Google Scholar 

  61. Bay JO, Ray-Coquard I, Fayette J et al. Docetaxel and gemcitabine combination in 133 advanced soft-tissue sarcomas: A retrospective analysis. Int J Cancer 2006; 119:706–711.

    Article  PubMed  CAS  Google Scholar 

  62. Lewis JJ, Leung D, Espat J et al. Effect of reresection in extremity soft tissue sarcoma. Ann Surg 2000; 231:655–663.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Lebbé, C., Renaud-Vilmer, C., Vignon-Pennamen, MD., Vérola, O. (2009). Sarcomes cutanés. In: Manifestations dermatologiques des maladies du système hématopoïétique et oncologie dermatologique. Springer, Paris. https://doi.org/10.1007/978-2-287-72092-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-72092-5_18

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-72091-8

  • Online ISBN: 978-2-287-72092-5

Publish with us

Policies and ethics