Advertisement

Comment prédire le risque évolutif chez les patients atteints ďun cancer du rein?

  • Pierre Karakiewicz
  • Gregory Verhoest
  • Georges C. Hutterer
Chapter
  • 336 Downloads
Part of the Oncologie pratique book series (ONCOLPRAT)

Abstrait

Ľévolution du mode de présentation des carcinomes à cellules rénales (CCR) et ľexplosion de nouvelles modalités de traitement ont révolutionné la prise en charge des CCR à tous les stades. Cependant, ľaccroissement exponentiel des options thérapeutiques a rendu complexe la décision du clinicien. Plusieurs outils pronostiques ont été développés afin de permettre la décision la plus rationnelle, fondée sur les connaissances contemporaines. La majorité est représentée par des nomogrammes permettant une individualisation du risque. Ces instruments peuvent être divisés en quatre catégories: (1) prédire le risque de récidive avant la néphrectomie, (2) prédire le risque de progression après néphrectomie en utilisant les caractéristiques histologiques de la tumeur, (3) prédire la survie après néphrectomie pour tous les stades des CCR et, enfin, (4) prédire la survie après néphrectomie chez les patients métastatiques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Karakiewicz PI, Briganti A, Chun FK et al. (2007) Multi-institutional validation of a new renal cancer-specific survival nomogram. J Clin Oncol 25: 1316–22PubMedCrossRefGoogle Scholar
  2. 2.
    Yaycioglu O, Roberts WW, Chan T et al. (2001) Prognostic assessment of nonmetastatic renal cell carcinoma: a clinically based model. Urology 58: 141–5PubMedCrossRefGoogle Scholar
  3. 3.
    Cindolo L, Patard JJ, Chiodini P et al. (2005) Comparison of predictive accuracy of four prognostic models for nonmetastatic renal cell carcinoma after nephrectomy: a multicenter European study. Cancer 104: 1362–71PubMedCrossRefGoogle Scholar
  4. 4.
    Cindolo L, de la Taille A, Messina G et al. (2003) A preoperative clinical prognostic model for non-metastatic renal cell carcinoma. BJU Int 92: 901–5PubMedCrossRefGoogle Scholar
  5. 5.
    Kattan MW, Reuter, V, Motzer RJ et al. (2001) A postoperative prognostic nomogram for renal cell carcinoma. J Urol 166: 63–7PubMedCrossRefGoogle Scholar
  6. 6.
    Sorbellini M, Kattan MW, Snyder ME et al. (2005) A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J Urol 173: 48–51PubMedGoogle Scholar
  7. 7.
    Frank I, Blute ML, Cheville JC et al. (2003) A multifactorial postoperative surveillance model for patients with surgically treated clear cell renal cell carcinoma. J Urol 170: 2225–32PubMedCrossRefGoogle Scholar
  8. 8.
    Zisman A, Pantuck AJ, Dorey F et al. (2001) Improved prognostication of renal cell carcinoma using an integrated staging system. J Clin Oncol 19: 1649–57PubMedGoogle Scholar
  9. 9.
    Zisman A, Pantuck AJ, Wieder J et al. (2002) Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J Clin Oncol 20: 4559–66PubMedCrossRefGoogle Scholar
  10. 10.
    Han KR, Bleumer I, Pantuck AJ et al. (2003) Validation of an integrated staging system toward improved prognostication of patients with localized renal cell carcinoma in an international population. J Urol 170: 2221–4PubMedCrossRefGoogle Scholar
  11. 11.
    Patard JJ, Kim HL, Lam JS et al. (2004) Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: an international multicenter study. J Clin Oncol 22: 3316–22PubMedCrossRefGoogle Scholar
  12. 12.
    Frank I, Blute ML, Cheville JC et al. (2002) An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J Urol 168: 2395–400PubMedCrossRefGoogle Scholar
  13. 13.
    Cagiannos I, Karakiewicz PI, Eastham JA et al. (2003) A preoperative nomogram identifying decreased risk of positive pelvic lymph nodes in patients with prostate cancer. J Urol 170: 1798–803PubMedCrossRefGoogle Scholar
  14. 13.
    Motzer RJ, Mazumdar M, Bacik J et al. (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17: 2530–40PubMedGoogle Scholar
  15. 15.
    Motzer RJ, Bacik J, Murphy BA et al. (2002) Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol 20: 289–96PubMedCrossRefGoogle Scholar
  16. 16.
    Motzer RJ, Bacik J, Schwartz LH et al. (2004) Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol 22: 454–63PubMedCrossRefGoogle Scholar
  17. 17.
    Karakiewicz PI, Trinh QD Lam JS et al. (2007) Platelet count and preoperative haemoglobin do not significantly increase the performance of established predictors of renal cell carcinoma-specific mortality. Eur Urol (Epub ahead of print).Google Scholar
  18. 18.
    Kattan MW (2003) Judging new markers by their ability to improve predictive accuracy. J Natl Cancer Inst 95: 634–5PubMedCrossRefGoogle Scholar
  19. 19.
    Karakiewicz PI, Trinh QD, de la Taille A et al. (2007) ECOG performance status 0 or 1 and symptom classification do not improve the ability to predict renal cell carcinoma-specific survival. Eur J Cancer 43: 1023–9PubMedCrossRefGoogle Scholar
  20. 20.
    Leibovich BC, Han KR, Bui MH et al. (2003) Scoring algorithm to predict survival after nephrectomy and immunotherapy in patients with metastatic renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 98: 2566–75PubMedCrossRefGoogle Scholar
  21. 21.
    Leibovich BC, Cheville JC, Lohse CM et al. (2005) A scoring algorithm to predict survival for patients with metastatic clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. J Urol 174: 1759–63PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France, Paris 2008

Authors and Affiliations

  • Pierre Karakiewicz
    • 1
  • Gregory Verhoest
    • 2
  • Georges C. Hutterer
    • 1
  1. 1.Cancer Prognostics and Health Outcomes UnitUniversité de MontréalMontréalCanada
  2. 2.Département ďoncologie médicaleCentre régional de lutte contre le cancer Val ďAurelleMontpellier cedex 5France

Personalised recommendations