Advertisement

Quelles voies moléculaires pour quelle histologie?

  • Nathalie Rioux-Leclercq
  • Patricia Fergelot
Chapter
  • 340 Downloads
Part of the Oncologie pratique book series (ONCOLPRAT)

Abstrait

Depuis la première classification des tumeurs du rein par ľAFIP (Armed Force Institute of Pathology) en 1976 qui individualisait alors trois cancers du rein — à cellules claires, à cellules granuleuses et à cellules sarcomatoïdes — de nombreuses autres classifications se sont succédé. En 1986, la classification de Thoenes a eu le très grand intérêt de prendre en compte ľorigine cellulaire de la tumeur: cellule du tube contourné proximal pour le carcinome à cellules claires, cellule du tube contourné distal pour le carcinome tubulopapillaire, cellule intercalaire A et B du tube collecteur cortical pour respectivement ľoncocytome et le carcinome chromophobe, et enfin cellule du tube collecteur extrapyramidal pour les carcinomes médullaires our de Bellini. Après la nouvelle classification de ľAFIP en 1994, qui fut peu utilisée, ľUICC (Union internationale contre le cancer) et ľAJCC (American Joint Comittee of Cancer) en 1997 ont proposé une nouvelle classifictaion qui prenait en compte ľorigine cellulaire de la tumeur, le type cellulaire, les éventuelles anomalies cytogénétiques associées et le pronostic. Cette classification, qui fut utilisée près de 10 ans, différenciait les tumeurs bénignes des tumeurs malignes du rein. En 2004, la classification OMS 2004 a individualisé les tumeurs épitheliales ou tumeurs à cellules rénales, des tumeurs non épithéliales. Les tumeurs épithéliales du rein sont divisées en:
  • -tumeurs bénignes; adénome papillaire, oncocytome et adénome métanéphrique;

  • -tumeurs malignes: carcinome à cellules rénales (CCR) de type conventionnel ou à cellules claires, CCR tubulopapillaire, CCR chromophobe, carcinome des tubes collecteurs;

  • -tumeurs malignes inclassables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. 1.
    Compérat E, Vasiliu V, Ferlicot S et al. (2005) Tumeurs du rein: nouvelles entités. Ann Pathol 25: 117–33PubMedCrossRefGoogle Scholar
  2. 2.
    Pellerin M, Coquille F, Molinie V et al. (2003) Masses liquidiennes des reins. Feuil Radiol 43: 379–90Google Scholar
  3. 3.
    Bloom TL, Gray Sears CL, Williams TR et al. (2003) Multilocular cystic renal cell carcinoma with osseous metaplasia in a 25-year-old woman. Urology 61: 462PubMedCrossRefGoogle Scholar
  4. 4.
    Argani P, Antonescu C, Couturier J et al. (2002) PRCC-TFE3 Renal carcinomas. Morphologic, immunohistochemical, ultrastructural, and molecular analysis of an entity associated with the t(X;1)(p11.2 q21). Am J Surg Pathol 26: 1553–6PubMedCrossRefGoogle Scholar
  5. 5.
    Argani P, Lal P, Hutchinson B et al. (2003) Aberrant nuclear immunoreactivity for TFE3 in neoplamss with TFE3 gene fusions. Am J Surg Pathol 27: 750–61PubMedCrossRefGoogle Scholar
  6. 6.
    Delahunt B, Eble JN, McCredie MRE et al. (2001) Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and aptient survival in 66 cases. Hum Pathol 32: 590–5PubMedCrossRefGoogle Scholar
  7. 7.
    Yang X, Tan MH, Kim HL et al. (2005) A molecular classification of papillary renal cell carcinoma. Cancer Res 65: 5628–37PubMedCrossRefGoogle Scholar
  8. 8.
    Pavlovich CP, McClellan MW, Eyler RA et al. (2002) Renal tumors in the Birt-Hogg-Dubé syndrome. Am J Surg Pathol 26: 1542–52PubMedCrossRefGoogle Scholar
  9. 9.
    Skinnider BF, Amin MB (2005) An immunohistochemical approach to the differential diagnosis of renal tumors. Sem Diag Pathol 22: 51–68CrossRefGoogle Scholar
  10. 10.
    Fuhrman SA, Lasky LC, Limas C (1982) Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 6: 655–63PubMedCrossRefGoogle Scholar
  11. 11.
    Robson CJ, Churchill BM, Anderson W (1969) The results of radical nephrectomy for renal cell carcinoma. J Urol 101: 297–301PubMedGoogle Scholar
  12. 12.
    Ed Eble JN, Sauter G, Epstein JI et al. (2004) WHO classification of tumors. Tumors of the genitourinary and male genital organs. IARC Press, LyonGoogle Scholar
  13. 13.
    Al-Aynati M, Chen V, Salama S et al. (2003) Interobserver and intraobserver variability usin the Fuhrman grading system for renal cell carcinoma. Arch Pathol Lab Med 127: 593–6PubMedGoogle Scholar
  14. 14.
    Ficarra V, Martignoni G, Maffei N et al. (2005) Original and reviewed nuclear grading according to the Fuhrman system. Cancer 103: 68–75PubMedCrossRefGoogle Scholar
  15. 15.
    Lang H, Lindner V, de Fromont M et al. (2005) Multicenter determination of optimal interobserver agreement using the Fuhrman grading system for renal cell carcinoma. Cancer 3: 625–9CrossRefGoogle Scholar
  16. 16.
    Medeiros LJ, Gelb AB, Weiss LM (1988) Renal cell carcinoma. Prognostic significance of morphologic parameters in 121 cases. Cancer 61: 1639–51PubMedCrossRefGoogle Scholar
  17. 17.
    Kontak JA, Campbell SC. Prognostic factors in renal cell carcinoma (2003) Urol Clin North Am 30: 467–80PubMedCrossRefGoogle Scholar
  18. 18.
    Bretheau D, Lechevallier E, De Fromont M et al. (1995) Prognostic value of nuclear grade of renal cell carcinoma. Cancer 76: 2543–9PubMedCrossRefGoogle Scholar
  19. 19.
    Dupre F, Guyetant S, Chautard D et al. (1998) Valeur pronostique du grade de Fuhrman dans le carcinome à cellules rénales. Une étude de 170 cas. Ann Pathol 18: 88–97PubMedGoogle Scholar
  20. 20.
    Rioux-Leclercq N et al. (2007) Prognostic ability of simplified nuclear grading of renal cell carcinoma. Cancer 109: 868–74PubMedCrossRefGoogle Scholar
  21. 21.
    van den Berg E, Storkel S (2003) Kidney: Renal cell carcinoma. Atlas Genet Cytogenet Oncol Haematol, june 2003Google Scholar
  22. 22.
    Bodmer D, van den Hurk W, van Groningen JM et al. (2002) Understanding familial and non-familial renal cell cancer. Hum Mol Genet 11: 2489–98PubMedCrossRefGoogle Scholar
  23. 23.
    Chauveau D, Duvic C, Chretien Y et al. (1996) Renal involvement in von Hippel-Lindau disease. Kidney Int 50: 944–51PubMedCrossRefGoogle Scholar
  24. 24.
    Latif F, Tory K, Gnarra J et al. (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260: 1317–20PubMedCrossRefGoogle Scholar
  25. 25.
    Gnarra JR, Tory K, Weng Y et al. (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7: 85–90.PubMedCrossRefGoogle Scholar
  26. 26.
    Yao M, Yoshida M, Kishida T et al. (2002) VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst 94: 1569–75PubMedGoogle Scholar
  27. 27.
    Banks RE, Tirukonda P, Taylor C et al. (2006) Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res 66: 2000–11PubMedCrossRefGoogle Scholar
  28. 28.
    Turcotte S, Desrosiers RR, Béliveau R (2004) Hypoxia upregulates von Hippel-Lindau tumor-suppressor protein through RhoA-dependent activity in renal cell carcinoma. Am J Physiol Renal Physiol 286: F338–48PubMedCrossRefGoogle Scholar
  29. 29.
    Maynard MA, Ohh M (2004) von Hippel Lindau tumor suppressor protein and hypoxia-inducible factor in kidney cancer. Am J Nephrol 24: 1–13PubMedCrossRefGoogle Scholar
  30. 30.
    Maxwell PH, Wiesener MS, Chang (1999) The tumour suppressor protein VHL targets hypoxia inducible factors for oxygen-dependent proteolysis. Nature 399: 271–5PubMedCrossRefGoogle Scholar
  31. 31.
    Grabmaier K, de Weijert MC, Veraegh GW et al. (2004) Strict regulation of CAIXG250/MN by HIF-1a in clear cell renal cell carcinoma. Oncogene 23: 5624–31PubMedCrossRefGoogle Scholar
  32. 32.
    Raval RR, Lau KW, Tran, MG et al. (2005) Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25: 5675–86PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang H, Gas P, Fukuda R et al. (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL deficient renal cell carcinoma by repression of c-Myc activity. Cancer Cell 11: 407–20PubMedCrossRefGoogle Scholar
  34. 34.
    Gordan JD, Bertout JA, Hu CJ et al. (2007) HIF-2a promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 11: 335–47PubMedCrossRefGoogle Scholar
  35. 35.
    Mandriota SJ, Turner KJ, Davies DR et al. (2002) HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer cell 1: 459–68PubMedCrossRefGoogle Scholar
  36. 36.
    Hergovich A, Lisztwan J, Barry R et al. (2003) Regulation of microtubule stability by the von Hippel-Lindau tumor suppressor protein pVHL. Nat cell Biol 5: 64–70PubMedCrossRefGoogle Scholar
  37. 37.
    Kuehn EW, Walz G, Benzing T (2007) von Hippel Lindau: a tumor suppressor links microtubules to ciliogenesis and cancer development. Cancer Res 67: 4537–40PubMedCrossRefGoogle Scholar
  38. 38.
    Koochekpour S, Jeffers M, Wang PH et al. (1999) The von Hippel-Lindau suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 19: 5902–12PubMedGoogle Scholar
  39. 39.
    Peruzzi B, Athauda G, Bottaro DP (2006) The von Hippel-Lindau tumor suppressor gene product represses oncogenic b-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 103: 14531–6PubMedCrossRefGoogle Scholar
  40. 40.
    Kurban G, Hudon V, Duplan E et al. (2006) Characterization of a von Hippel lindau pathway involved in extracellular matrix remodeling, cell invasion and angiogenesis. Cancer Res 66: 1313–9PubMedCrossRefGoogle Scholar
  41. 41.
    Rankin EB, Tomaszewski JE, Haase VH (2006) Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res 66: 2576–83PubMedCrossRefGoogle Scholar
  42. 42.
    Schraml P, Struckmann K, Hatz F et al. (2002) VHL mutations and their correlation with tumour cell proliferation, microvessel density and patient prognosis in clear cell renal cell carcinoma. J Pathol 196: 186–93PubMedCrossRefGoogle Scholar
  43. 43.
    Brauch H, Weirich G, Brieger J et al. (2000) VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res 60: 1942–8PubMedGoogle Scholar
  44. 44.
    Parker AS, Cheville JC, Lohse CM et al. (2004) Loss of expression of von Hippel-Lindau tumor suppressor protein associated with improved survival in patients with early-stage clear cell renal cell carcinoma. Urology 65: 1090–5CrossRefGoogle Scholar
  45. 45.
    Wiesener MS, Munchenhagen PM, Berger I et al. (2001) Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res 61: 5215–22PubMedGoogle Scholar
  46. 46.
    Turner KJ, Moore JW, Jones A et al. (2002) Expression of hypoxia-inducible factors in human renal cancer: relationship to angiogenesis and to the von Hippel-Lindau gene mutation. Cancer Res 62: 2957–61PubMedGoogle Scholar
  47. 47.
    Lidgren A, Hedberg Y, Grankvist K (2005) The expression of Hypoxia-inducible factor 1a is a favorable independent prognostic factor in renal cell carcinoma. Clin Cancer Res 11: 1129–35PubMedGoogle Scholar
  48. 48.
    Bui MH, Seligson D, Han KR et al. (2003) Carbonic anhydrase IX is an independant predictor of survival in advanced renal clear cell carcinoma: implications for prognosis and therapy. Clin Cancer Res 9: 802–11PubMedGoogle Scholar
  49. 49.
    Ratcliffe PJ (2007) Fumarate hydratase deficiency and Cancer: activation of hypoxia signaling? Cancer Cell 11: 303–5PubMedCrossRefGoogle Scholar
  50. 50.
    Schmidt L, Duh F-M, Chen F et al. (1997) Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16: 68–73PubMedCrossRefGoogle Scholar
  51. 51.
    Linehan WM, Pinto PA, Srinivasan R et al. (2007) Identification of the genes for kidney cancer: opportunity for disease-specific targeted therapy. Clin Cancer Res 13: 671s–9sPubMedCrossRefGoogle Scholar
  52. 52.
    Hudson CC, Liu M, Chiang GG et al. (2002) Regulation of hypoxia-inducible factor 1alpha expression and functionby the mammalian target of rapamycin. Mol Cell Biol 22: 7004–14PubMedCrossRefGoogle Scholar
  53. 53.
    Pantuck AJ, Seligson DB, Klatte T et al. (2007) Pronostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109: 2257–67PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag France, Paris 2008

Authors and Affiliations

  • Nathalie Rioux-Leclercq
    • 1
  • Patricia Fergelot
    • 2
  1. 1.Service ďanatomie et de cytologie pathologiques Pôle Cellules et TissusCHU PontchaillouRennes cedex 9France
  2. 2.Departement de biochimie et génétique moléculaireCHU PontchaillouRennes cedex 9France

Personalised recommendations