Skip to main content

Protection rénale pharmacologique

  • Chapter
  • 557 Accesses

Part of the book series: Le point sur … ((POINT))

Abstrait

Il existe de très nombreuses définitions de l’insuffisance rénale aiguë (IRA) dans la littérature (1). Parmi celles-ci, on retiendra celle qui divise l’IRA en trois catégories. L’IRA « pré-rénale » est la conséquence d’une diminution de la perfusion rénale qui va être responsable d’une réduction du débit de filtration glomérulaire (DFG), l’IRA « post-rénale » est liée à une obstruction des voies urinaires dont la cause est intrinsèque ou extrinsèque et l’IRA « rénale » qui affecte les structures du greffon: les glomérules, les tubules, l’interstitium et les vaisseaux. L’IRA est une affection grave avec un taux de mortalité qui reste élevé, autour de 50 à 70 % variant selon la cause et les comorbidités associées, sans amélioration notable au cours des dernières années. Actuellement, si la dialyse a transformé le pronostic de ces patients, la mortalité reste élevée notamment lorsque l’IRA s’incrit dans un tableau de défaillances multiviscérales. Aussi, de nombreux traitements pharmacologiques ont été développés, s’appuyant sur les mécanismes physiopathologiques pour le traitement ou la prévention de l’IRA. Ainsi, de façon schématique, il existe cinq grands mécanismes sur lesquels une intervention thérapeutique préventive est théoriquement possible: la réduction du débit sanguin rénal, le déséquilibre de synthèse entre molécules vasodilatatrices et molécules vasoconstrictrices, l’obstacle à l’écoulement du flux tubulaire, l’inflammation et la reperfusion.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Kellum J A, Levin N, Bouman C, Lameire N (2002) Developing a consensus classification system for acute renal failure. Curr Opin Crit Care 8: 509–14

    Article  PubMed  Google Scholar 

  2. Bourgoin A, Leone M, Delmas A et al. (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33: 780–6

    Article  PubMed  CAS  Google Scholar 

  3. Ledoux D, Astiz ME, Carpati CM, Rackow EC (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–32

    Article  PubMed  CAS  Google Scholar 

  4. Suen WS, Mok CK, Chiu SW et al. (1998) Risk factors for development of acute renal failure (ARF) requiring dialysis in patients undergoing cardiac surgery. Angiology 49: 789–800

    PubMed  CAS  Google Scholar 

  5. Legendre C, Thervet E, Page B, Percheron A et al. (1993) Hydroxyethylstarch and osmotic-nephrosis-like lesions in kidney transplantation. Lancet 342: 248–9

    Article  PubMed  CAS  Google Scholar 

  6. Cittanova ML, Leblanc I, Legendre C et al. (1996) Effect of hydroxyethylstarch in braindead kidney donors on renal function in kidney-transplant recipients. Lancet 348: 1620–2

    Article  PubMed  CAS  Google Scholar 

  7. Cittanova ML, Mavre J, Riou B, Coriat P (2001) Long-term follow-up of transplanted kidneys according to plasma volume expander of kidney donors. Intens Care Med 27: 1830

    Article  CAS  Google Scholar 

  8. Coronel B, Laurent V, Mercatello A et al. (1994) Can hydroxyethylamidon be used during intensive care of brain-dead organ donors? Ann Fr Anesth Réanim 13: 10–6

    PubMed  CAS  Google Scholar 

  9. Coronel B, Mercatello A, Martin X, Lefrancois N (1997) Hydroxyethylstarch and renal function in kidney transplant recipients. Lancet 349: 884

    Article  PubMed  CAS  Google Scholar 

  10. Deman A, Peeters P, Sennesael J (1999) Hydroxyethyl starch does not impair immediate renal function in kidney transplant recipients: a retrospective, multicentre analysis. Nephrol Dial Transplant 14: 1517–20

    Article  PubMed  CAS  Google Scholar 

  11. Godet G, Fleron MH, Vicaut E et al. (1997) Risk factors for acute postoperative renal failure in thoracic or thoracoabdominal aortic surgery: a prospective study. Anesth Analg 85: 1227–32

    Article  PubMed  CAS  Google Scholar 

  12. Boldt J, Muller M, Mentges D et al. (1998) Volume therapy in the critically ill: is there a difference? Intensive Care Med 24: 28–36

    Article  PubMed  CAS  Google Scholar 

  13. Vogt N, Bothner U, Brinkmann A et al. (1999) Peri-operative tolerance to large-dose 6% HES 200/0.5 in major urological procedures compared with 5% human albumin. Anaesthesia 54: 121–7

    Article  PubMed  CAS  Google Scholar 

  14. Boldt J, Brenner T, Lehmann A et al. (2003) Influence of two different volume replacement regimens on renal function in elderly patients undergoing cardiac surgery: comparison of a new starch preparation with gelatin. Intens Care Med 29: 763–9

    Google Scholar 

  15. Neff TA, Doelberg M, Jungheinrich C et al. (2003) Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in patients with severe head injury. Anesth Analg 96: 1453–9

    Article  PubMed  CAS  Google Scholar 

  16. Winkelmayer WC, Glynn RJ, Levin R, Avorn J (2003) Hydroxyethyl starch and change in renal function in patients undergoing coronary artery bypass graft surgery. Kidney Int 64: 1046–9

    Article  PubMed  Google Scholar 

  17. Schortgen F, Lacherade JC, Bruneel F et al. (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357: 911–6

    Article  PubMed  CAS  Google Scholar 

  18. Allison KP, Gosling P, Jones S et al. (1999) Randomized trial of hydroxyethyl starch versus gelatine for trauma resuscitation. J Trauma 47: 1114–21

    PubMed  CAS  Google Scholar 

  19. Merten GJ, Burgess WP, Gray LV et al. (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291: 2328–34

    Article  PubMed  CAS  Google Scholar 

  20. Better OS, Stein JH (1990) Early management of shock and prophylaxis of acute renal failure in traumatic rhabdomyolysis. N Engl J Med 322: 825–9

    Article  PubMed  CAS  Google Scholar 

  21. Homsi E, Barreiro MF, Orlando JM, Higa EM (1997) Prophylaxis of acute renal failure in patients with rhabdomyolysis. Ren Fail 19: 283–8

    PubMed  CAS  Google Scholar 

  22. Priano LL, Smith JD, Cohen JI, Everts EE (1993) Intravenous fluid administration and urine output during radical neck surgery. Head Neck 15: 208–15

    Article  PubMed  CAS  Google Scholar 

  23. Prien T, Backhaus N, Pelster F et al. (1990) Effect of intraoperative fluid administration and colloid osmotic pressure on the formation of intestinal edema during gastrointestinal surgery. J Clin Anesth 2: 317–23

    Article  PubMed  CAS  Google Scholar 

  24. Patel RL, Townsend ER, Fountain SW (1992) Elective pneumonectomy: factors associated with morbidity and operative mortality. Ann Thorac Surg 54: 84–8

    Article  PubMed  CAS  Google Scholar 

  25. Lobo DN, Bostock KA, Neal KR et al. (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 359: 1812–8

    Article  PubMed  Google Scholar 

  26. Nisanevich V, Felsenstein I, Almogy G et al. (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103: 25–32

    Article  PubMed  Google Scholar 

  27. Wang IK, Wang ST, Lin CL et al. (2006) Early prognostic factors in patients with acute renal failure requiring dialysis. Ren Fail 28: 43–9

    Article  PubMed  CAS  Google Scholar 

  28. Finfer S, Bellomo R, Boyce N et al. (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350: 2247–56

    Article  PubMed  CAS  Google Scholar 

  29. Ortega R, Gines P, Uriz J et al. (2002) Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: results of a prospective, nonrandomized study. Hepatology 36: 941–8

    PubMed  CAS  Google Scholar 

  30. Sort P, Navasa M, Arroyo V et al. (1999) Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 341: 403–9

    Article  PubMed  CAS  Google Scholar 

  31. Richer M, Robert S, Lebel M (1996) Renal hemodynamics during norepinephrine and low-dose dopamine infusions in man. Crit Care Med 24: 1150–6

    Article  PubMed  CAS  Google Scholar 

  32. Bellomo R, Giantomasso DD (2001) Noradrenaline and the kidney: friends or foes? Crit Care 5: 294–8

    Article  PubMed  CAS  Google Scholar 

  33. Anderson WP, Korner PI, Selig SE (1981) Mechanisms involved in the renal responses to intravenous and renal artery infusions of noradrenaline in conscious dogs. J Physiol 321: 21–30

    PubMed  CAS  Google Scholar 

  34. Bellomo R, Kellum JA, Wisniewski SR, Pinsky MR (1999) Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am J Respir Crit Care Med 159: 1186–92

    PubMed  CAS  Google Scholar 

  35. Martin C, Alaya M, Bras J et al. (1990) Assessment of creatinine clearance in intensive care patients. Crit Care Med 18: 1224–6

    Article  PubMed  CAS  Google Scholar 

  36. Fukuoka T, Nishimura M, Imanaka H et al. (1989) Effects of norepinephrine on renal function in septic patients with normal and elevated serum lactate levels. Crit Care Med 17: 1104–7

    Article  PubMed  CAS  Google Scholar 

  37. Redl-Wenzl EM, Armbruster C, Edelmann G et al. (1993) The effects of norepinephrine on hemodynamics and renal function in severe septic shock states. Intens Care Med 19: 151–4

    Article  CAS  Google Scholar 

  38. Albanese J, Leone M, Garnier F et al. (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126: 534–9

    Article  PubMed  CAS  Google Scholar 

  39. Duke GJ, Briedis JH, Weaver RA (1994) Renal support in critically ill patients: low-dose dopamine or low-dose dobutamine? Crit Care Med 22: 1919–25

    Article  PubMed  CAS  Google Scholar 

  40. Parker S, Carlon GC, Isaacs M et al. (1981) Dopamine administration in oliguria and oliguric renal failure. Crit Care Med 9: 630–2

    Article  PubMed  CAS  Google Scholar 

  41. Bellomo R, Chapman M, Finfer S et al. (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356: 2139–43

    Article  PubMed  CAS  Google Scholar 

  42. Lassnigg A, Donner E, Grubhofer G et al. (2000) Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 11: 97–104

    PubMed  CAS  Google Scholar 

  43. Kellum JA (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29: 1526–31

    Article  PubMed  CAS  Google Scholar 

  44. Denton MD, Chertow GM, Brady HR (1996) “Renal-dose” dopamine for the treatment of acute renal failure: scientific rationale, experimental studies and clinical trials. Kidney Int 50: 4–14

    Article  PubMed  CAS  Google Scholar 

  45. Van Den Berghe G, De Zegher F (1996) Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med 24: 1580–90

    Article  PubMed  Google Scholar 

  46. Levy B, Nace L, Bollaert PE et al. (1999) Comparison of systemic and regional effects of dobutamine and dopexamine in norepinephrine-treated septic shock. Intensive Care Med 25: 942–8

    Article  PubMed  CAS  Google Scholar 

  47. Takala J, Meier-Hellmann A, Eddleston J et al. (2000) Effect of dopexamine on outcome after major abdominal surgery: a prospective, randomized, controlled multicenter study. European Multicenter Study Group on Dopexamine in Major Abdominal Surgery. Crit Care Med 28: 3417–23

    Article  PubMed  CAS  Google Scholar 

  48. Ralph CJ, Tanser SJ, Macnaughton PD, Sinclair DG (2002) A randomised controlled trial investigating the effects of dopexamine on gastrointestinal function and organ dysfunction in the critically ill. Intens Care Med 28: 884–90

    Article  Google Scholar 

  49. Mathur VS, Swan SK, Lambrecht LJ et al. (1999) The effects of fenoldopam, a selective dopamine receptor agonist, on systemic and renal hemodynamics in normotensive subjects. Crit Care Med 27: 1832–7

    Article  PubMed  CAS  Google Scholar 

  50. Morelli A, Ricci Z, Bellomo R et al. (2005) Prophylactic fenoldopam for renal protection in sepsis: a randomized, double-blind, placebo-controlled pilot trial. Crit Care Med 33: 2451–6

    Article  PubMed  CAS  Google Scholar 

  51. Tumlin JA, Finkel KW, Murray PT et al. (2005) Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis 46: 26–34

    Article  PubMed  CAS  Google Scholar 

  52. Bove T, Landoni G, Calabro MG, et al. (2005) Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation 111: 3230–5

    Article  PubMed  CAS  Google Scholar 

  53. Stone GW, Mccullough PA, Tumlin JA et al. (2003) Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290: 2284–91

    Article  PubMed  CAS  Google Scholar 

  54. Sheinbaum R, Ignacio C, Safi HJ, Estrera A (2003) Contemporary strategies to preserve renal function during cardiac and vascular surgery. Rev Cardiovasc Med 4Suppl 1: S21–8

    PubMed  Google Scholar 

  55. Edwards RM, Trizna W, Kinter LB (1989) Renal microvascular effects of vasopressin and vasopressin antagonists. Am J Physiol 256: F274–8

    PubMed  CAS  Google Scholar 

  56. Tsuneyoshi I, Yamada H, Kakihana Y et al. (2001) Hemodynamic and metabolic effects of low-dose vasopressin infusions in vasodilatory septic shock. Crit Care Med 29: 487–93

    Article  PubMed  CAS  Google Scholar 

  57. Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96: 576–82

    Article  PubMed  CAS  Google Scholar 

  58. Levy B, Vallee C, Lauzier F et al. (2004) Comparative effects of vasopressin, norepinephrine, and L-canavanine, a selective inhibitor of inducible nitric oxide synthase, in endotoxic shock. Am J Physiol Heart Circ Physiol 287: H209–15

    Article  PubMed  CAS  Google Scholar 

  59. Albanese J, Leone M, Delmas A, Martin C (2005) Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med 33: 1897–902

    Article  PubMed  CAS  Google Scholar 

  60. Iaina A, Solomon S, Eliahou HE (1975) Reduction in severity of acute renal failure in rats by beta-adrenergic blockade. Lancet 2: 157–9

    Article  PubMed  CAS  Google Scholar 

  61. Solez K, Ideura T, Silvia C B et al. (1980) Clonidine after renal ischemia to lessen acute renal failure and microvascular damage. Kidney Int 18: 309–22

    Article  PubMed  CAS  Google Scholar 

  62. Eknoyan G, Dobyan DC, Senekjian HO, Bulger RE (1983) Protective effect of oral clonidine in the prophylaxis and therapy of mercuric chloride-induced acute renal failure in the rat. J Lab Clin Med 102: 699–713

    PubMed  CAS  Google Scholar 

  63. Cumming AD (1994) Acute renal failure and sepsis: therapeutic approaches. Nephrol Dial Transplant 9Suppl 4: 159–63

    PubMed  Google Scholar 

  64. Dos Santos OF, Boim MA, Barros EJ et al. (1991) Nephrotoxicity of cyclosporine: the role of platelet-activating factor and thromboxane. Lipids 26: 1320–3

    Article  PubMed  Google Scholar 

  65. Smith SR, Creech EA, Schaffer AV et al. (1992) Effects of thromboxane synthase inhibition with CGS 13080 in human cyclosporine nephrotoxicity. Kidney Int 41: 199–205

    Article  PubMed  CAS  Google Scholar 

  66. Van Der Heide JJ, Bilo HJ, Donker JM et al. (1993) Effect of dietary fish oil on renal function and rejection in cyclosporine-treated recipients of renal transplants. N Engl J Med 329: 769–73

    Article  PubMed  Google Scholar 

  67. Arakawa K, Suzuki H, Naitoh M et al. (1996) Role of adenosine in the renal responses to contrast medium. Kidney Int 49: 1199–206

    Article  PubMed  CAS  Google Scholar 

  68. Lee HT, Xu H, Nasr SH et al. (2004) A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol 286: F298–306

    Article  PubMed  CAS  Google Scholar 

  69. Dussol B, Morange S, Loundoun A et al. (2006) A randomized trial of saline hydration to prevent contrast nephropathy in chronic renal failure patients. Nephrol Dial Transplant 21: 2120–6

    Article  PubMed  CAS  Google Scholar 

  70. Kramer BK, Preuner J, Ebenburger A et al. (2002) Lack of renoprotective effect of theophylline during aortocoronary bypass surgery. Nephrol Dial Transplant 17: 910–5

    Article  PubMed  CAS  Google Scholar 

  71. Erley CM, Duda SH, Rehfuss D et al. (1999) Prevention of radiocontrast-media-induced nephropathy in patients with pre-existing renal insufficiency by hydration in combination with the adenosine antagonist theophylline. Nephrol Dial Transplant 14: 1146–9

    Article  PubMed  CAS  Google Scholar 

  72. Edwards RM, Trizna W, Ohlstein EH (1990) Renal microvascular effects of endothelin. Am J Physiol 259: F217–21

    PubMed  CAS  Google Scholar 

  73. Weitzberg E, Lundberg JM, Rudehill A (1991) Elevated plasma levels of endothelin in patients with sepsis syndrome. Circ Shock 33: 222–7

    PubMed  CAS  Google Scholar 

  74. Mitaka C, Hirata Y, Yokoyama K et al. (1999) Improvement of renal dysfunction in dogs with endotoxemia by a nonselective endothelin receptor antagonist. Crit Care Med 27: 146–53

    Article  PubMed  CAS  Google Scholar 

  75. Wang A, Holcslaw T, Bashore TM et al. (2000) Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int 57: 1675–80

    Article  PubMed  CAS  Google Scholar 

  76. Levin ER, Gardner DG, Samson WK (1998) Natriuretic peptides. N Engl J Med 339: 321–8

    Article  PubMed  CAS  Google Scholar 

  77. Vesely DL (2003) Natriuretic peptides and acute renal failure. Am J Physiol Renal Physiol 285: F167–77

    PubMed  CAS  Google Scholar 

  78. Meyer M, Pfarr E, Schirmer G et al. (1999) Therapeutic use of the natriuretic peptide ularitide in acute renal failure. Ren Fail 21: 85–100

    PubMed  CAS  Google Scholar 

  79. Allgren RL, Marbury TC, Rahman SN et al. (1997) Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med 336: 828–34

    Article  PubMed  CAS  Google Scholar 

  80. Lewis J, Agodoa L, Cheek D et al. (2001) Comparison of cross-sectional renal function measurements in African Americans with hypertensive nephrosclerosis and of primary formulas to estimate glomerular filtration rate. Am J Kidney Dis 38: 744–53

    PubMed  CAS  Google Scholar 

  81. Sward K, Valsson F, Odencrants P et al. (2004) Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med 32: 1310–5

    Article  PubMed  CAS  Google Scholar 

  82. Sands JM, Neylan JF, Olson RA et al. (1991) Atrial natriuretic factor does not improve the outcome of cadaveric renal transplantation. J Am Soc Nephrol 1: 1081–6

    PubMed  CAS  Google Scholar 

  83. Radcliffe RM, Cullen CL (1991) Preservation of future options: restorative procedures on first permanent molars in children. ASDC J Dent Child 58: 104–8

    PubMed  CAS  Google Scholar 

  84. Alkhunaizi AM, Schrier RW (1996) Management of acute renal failure: new perspectives. Am J Kidney Dis 28: 315–28

    PubMed  CAS  Google Scholar 

  85. Schrier RW, Arnold PE, Van Putten VJ, Burke TJ (1987) Cellular calcium in ischemic acute renal failure: role of calcium entry blockers. Kidney Int 32: 313–21

    Article  PubMed  CAS  Google Scholar 

  86. Conger JD, Robinette JB, Schrier RW (1988) Smooth muscle calcium and endothelium-derived relaxing factor in the abnormal vascular responses of acute renal failure. J Clin Invest 82: 532–7

    PubMed  CAS  Google Scholar 

  87. Duggan KA, Macdonald GJ, Charlesworth JA, Pussell BA (1985) Verapamil prevents post-transplant oliguric renal failure. Clin Nephrol 24: 289–91

    PubMed  CAS  Google Scholar 

  88. Ladefoged SD, Andersen CB (1994) Calcium channel blockers in kidney transplantation. Clin Transplant 8: 128–33

    PubMed  CAS  Google Scholar 

  89. Lumlertgul D, Wongmekiat O, Sirivanichai C et al. (1991) Intrarenal infusion of gallopamil in acute renal failure. A preliminary report. Drugs 42Suppl 1: 44–50

    Article  PubMed  Google Scholar 

  90. Young E W, Diab A, Kirsh MM (1998) Intravenous diltiazem and acute renal failure after cardiac operations. Ann Thorac Surg 65: 1316–9

    Article  PubMed  CAS  Google Scholar 

  91. Piper SN, Kumle B, Maleck WH et al. (2003) Diltiazem may preserve renal tubular integrity after cardiac surgery. Can J Anaesth 50: 285–92

    PubMed  Google Scholar 

  92. Coriat P, Richer C, Douraki T et al. (1994) Influence of chronic angiotensin-converting enzyme inhibition on anesthetic induction. Anesthesiology 81: 299–307

    Article  PubMed  CAS  Google Scholar 

  93. Ryckwaert F, Colson P (1997) Hemodynamic effects of anesthesia in patients with ischemic heart failure chronically treated with angiotensin-converting enzyme inhibitors. Anesth Analg 84: 945–9

    Article  PubMed  CAS  Google Scholar 

  94. Cittanova M L, Zubicki A, Savu C et al. (2001) The chronic inhibition of angiotensin-converting enzyme impairs postoperative renal function. Anesth Analg 93: 1111–5

    Article  PubMed  CAS  Google Scholar 

  95. Strippoli GF, Craig M, Schena FP, Craig JC (2005) Antihypertensive agents for primary prevention of diabetic nephropathy. J Am Soc Nephrol 16: 3081–91

    Article  PubMed  CAS  Google Scholar 

  96. Barnett A (2006) Prevention of loss of renal function over time in patients with diabetic nephropathy. Am J Med 119: S40–7

    Article  PubMed  CAS  Google Scholar 

  97. Remuzzi G, Macia M, Ruggenenti P (2006) Prevention and treatment of diabetic renal disease in type 2 diabetes: the BENEDICT study. J Am Soc Nephrol 17: S90–7

    Article  PubMed  Google Scholar 

  98. Heyman SN, Rosen S, Epstein FH et al. (1994) Loop diuretics reduce hypoxic damage to proximal tubules of the isolated perfused rat kidney. Kidney Int 45: 981–5

    Article  PubMed  CAS  Google Scholar 

  99. Stevens MA, Mccullough PA, Tobin KJ et al. (1999) A prospective randomized trial of prevention measures in patients at high risk for contrast nephropathy: results of the P.R.I.N.C.E. Study. Prevention of Radiocontrast Induced Nephropathy Clinical Evaluation. J Am Coll Cardiol 33: 403–11

    Article  PubMed  CAS  Google Scholar 

  100. Alpert RA, Roizen MF, Hamilton WK et al. (1984) Intraoperative urinary output does not predict postoperative renal function in patients undergoing abdominal aortic revascularization. Surgery 95: 707–11

    PubMed  CAS  Google Scholar 

  101. Kellum JA (1998) Use of diuretics in the acute care setting. Kidney Int Suppl 66: S67–70

    PubMed  CAS  Google Scholar 

  102. Wiemer WGW, Bijnen Ab (1983) A controlled study on the effect of mannitol on immediate renal function after cadaver donor kidney transplantation. Transplantation 35: 99–101

    Google Scholar 

  103. Van Valenberg PL, Hoitsma AJ, Tiggeler RG et al. (1987) Mannitol as an indispensable constituent of an intraoperative hydration protocol for the prevention of acute renal failure after renal cadaveric transplantation. Transplantation 44: 784–8

    Article  PubMed  Google Scholar 

  104. Gubern JM, Sancho JJ, Simo J, Sitges-Serra A (1988) A randomized trial on the effect of mannitol on postoperative renal function in patients with obstructive jaundice. Surgery 103: 39–44

    PubMed  CAS  Google Scholar 

  105. Sitges-Serra A, Carulla X, Piera C et al. (1992) Body water compartments in patients with obstructive jaundice. Br J Surg 79: 553–6

    Article  PubMed  CAS  Google Scholar 

  106. Weisberg LS, Kurnik PB, Kurnik BR (1994) Risk of radiocontrast nephropathy in patients with and without diabetes mellitus. Kidney Int 45: 259–65

    Article  PubMed  CAS  Google Scholar 

  107. Dorman HR, Sondheimer JH, Cadnapaphornchai P (1990) Mannitol-induced acute renal failure. Medicine (Baltimore) 69: 153–9

    CAS  Google Scholar 

  108. Sheridan AM, Bonventre JV (2000) Cell biology and molecular mechanisms of injury in ischemic acute renal failure. Curr Opin Nephrol Hypertens 9: 427–34

    Article  PubMed  CAS  Google Scholar 

  109. Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74: 1156–64

    PubMed  CAS  Google Scholar 

  110. Paller MS (1988) Renal work, glutathione and susceptibility to free radical-mediated postischemic injury. Kidney Int 33: 843–9

    Article  PubMed  CAS  Google Scholar 

  111. Toledo-Pereyra LH, Simmons RL, Olson LC, Najarian JS (1977) Clinical effect of allopurinol on preserved kidneys: a randomized double-blind study. Ann Surg 185: 128–31

    Article  PubMed  CAS  Google Scholar 

  112. Venkatachalam MA, Weinberg JM, Patel Y et al. (1996) Cytoprotection of kidney epithelial cells by compounds that target amino acid gated chloride channels. Kidney Int 49: 449–60

    Article  PubMed  CAS  Google Scholar 

  113. Weinberg JM, Roeser NF, Davis JA, Venkatachalam MA (1997) Glycine-protected, hypoxic, proximal tubules develop severely compromised energetic function. Kidney Int 52: 140–51

    Article  PubMed  CAS  Google Scholar 

  114. Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74: 139–62

    PubMed  CAS  Google Scholar 

  115. Schneeberger H, Illner WD, Abendroth D et al. (1989) First clinical experiences with superoxide dismutase in kidney transplantation-results of a double-blind randomized study. Transplant Proc 21: 1245–6

    PubMed  CAS  Google Scholar 

  116. Ploeg RJ, Van Bockel JH, Langendijk PT et al. (1992) Effect of preservation solution on results of cadaveric kidney transplantation. The European Multicentre Study Group. Lancet 340: 129–37

    Article  PubMed  CAS  Google Scholar 

  117. Safirstein R, Andrade L, Vieira JM (2000) Acetylcysteine and nephrotoxic effects of radiographic contrast agents-a new use for an old drug. N Engl J Med 343: 210–2

    Article  PubMed  CAS  Google Scholar 

  118. Tepel M, Van Der Giet M, Schwarzfeld C et al. (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 343: 180–4

    Article  PubMed  CAS  Google Scholar 

  119. Diaz-Sandoval LJ, Kosowsky BD, Losordo DW (2002) Acetylcysteine to prevent angiography-related renal tissue injury (the APART trial). Am J Cardiol 89: 356–8

    Article  PubMed  CAS  Google Scholar 

  120. Shyu KG, Cheng JJ, Kuan P (2002) Acetylcysteine protects against acute renal damage in patients with abnormal renal function undergoing a coronary procedure. J Am Coll Cardiol 40: 1383–8

    Article  PubMed  CAS  Google Scholar 

  121. Brophy DF (2002) Role of N-acetylcysteine in the prevention of radiocontrast-induced nephropathy. Ann Pharmacother 36: 1466–70

    Article  PubMed  CAS  Google Scholar 

  122. Briguori C, Manganelli F, Scarpato P et al. (2002) Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol 40: 298–303

    Article  PubMed  CAS  Google Scholar 

  123. Durham JD, Caputo C, Dokko J et al. (2002) A randomized controlled trial of N-acetylcysteine to prevent contrast nephropathy in cardiac angiography. Kidney Int 62: 2202–7

    Article  PubMed  CAS  Google Scholar 

  124. Alonso A, Lau J, Jaber BL, et al. (2004) Prevention of radiocontrast nephropathy with N-acetylcysteine in patients with chronic kidney disease: a meta-analysis of randomized, controlled trials. Am J Kidney Dis 43: 1–9

    Article  PubMed  CAS  Google Scholar 

  125. Birck R, Krzossok S, Markowetz F et al. (2003) Acetylcysteine for prevention of contrast nephropathy: meta-analysis. Lancet 362: 598–603

    Article  PubMed  CAS  Google Scholar 

  126. Burns KE, Chu MW, Novick RJ et al. (2005) Perioperative N-acetylcysteine to prevent renal dysfunction in high-risk patients undergoing cabg surgery: a randomized controlled trial. JAMA 294: 342–50

    Article  PubMed  CAS  Google Scholar 

  127. Barrett BJ, Parfrey PS (2006) Clinical practice. Preventing nephropathy induced by contrast medium. N Engl J Med 354: 379–86

    Article  PubMed  CAS  Google Scholar 

  128. Hynninen MS, Niemi TT, Poyhia R et al. (2006) N-acetylcysteine for the prevention of kidney injury in abdominal aortic surgery: a randomized, double-blind, placebo-controlled trial. Anesth Analg 102: 1638–45

    Article  PubMed  CAS  Google Scholar 

  129. Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14: 2199–210

    Article  PubMed  Google Scholar 

  130. Hammerman MR (1998) Potential role of growth factors in the prophylaxis and treatment of acute renal failure. Kidney Int Suppl 64: S19–22

    PubMed  CAS  Google Scholar 

  131. Hirschberg R, Ding H (1998) Growth factors and acute renal failure. Semin Nephrol 18: 191–207

    PubMed  CAS  Google Scholar 

  132. Hirschberg R, Brunori G, Kopple JD, Guler HP (1993) Effects of insulin-like growth factor I on renal function in normal men. Kidney Int 43: 387–97

    Article  PubMed  CAS  Google Scholar 

  133. Ding H, Kopple JD, Cohen A, Hirschberg R (1993) Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure. J Clin Invest 91: 2281–7

    Article  PubMed  CAS  Google Scholar 

  134. Franklin SC, Moulton M, Sicard GA et al. (1997) Insulin-like growth factor I preserves renal function postoperatively. Am J Physiol 272: F257–9

    PubMed  CAS  Google Scholar 

  135. Hladunewich MA, Corrigan G, Derby GC et al. (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64: 593–602

    Article  PubMed  CAS  Google Scholar 

  136. Sharples EJ, Patel N, Brown P et al. (2004) Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol 15: 2115–24

    Article  PubMed  CAS  Google Scholar 

  137. Patel NS, Sharples EJ, Cuzzocrea S et al. (2004) Pretreatment with EPO reduces the injury and dysfunction caused by ischemia/reperfusion in the mouse kidney in vivo. Kidney Int 66: 983–9

    Article  PubMed  CAS  Google Scholar 

  138. Acker CG, Singh AR, Flick RP et al. (2000) A trial of thyroxine in acute renal failure. Kidney Int 57: 293–8

    Article  PubMed  CAS  Google Scholar 

  139. Van Den Berghe G, Wouters P, Weekers F et al. (2001) Intensive insulin therapy in the critically ill patients. N Engl J Med 345: 1359–67

    Article  PubMed  Google Scholar 

  140. Van Den Berghe G, Wilmer A, Hermans G et al. (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354: 449–61

    Article  PubMed  Google Scholar 

  141. Langouche L, Vanhorebeek I, Vlasselaers D et al. (2005) Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest 115: 2277–86

    Article  PubMed  CAS  Google Scholar 

  142. Melin J, Hellberg O, Larsson E et al. (2002) Protective effect of insulin on ischemic renal injury in diabetes mellitus. Kidney Int 61: 1383–92

    Article  PubMed  CAS  Google Scholar 

  143. Moursi M, Rising CL, Zelenock GB, D’alecy LG (1987) Dextrose administration exacerbates acute renal ischemic damage in anesthetized dogs. Arch Surg 122: 790–4

    PubMed  CAS  Google Scholar 

  144. Malmberg K, Norhammar A, Wedel H (1999) Glycometabolic state at admission: important risk marker of mortality in conventionally treated patients with diabetes mellitus and acute myocardial infarction: long-term results from the Diabetes and Insulin-Glucose Infusion in Acute Myocardial Infarction (DIGAMI) study. Circulation 99: 2626–32

    PubMed  CAS  Google Scholar 

  145. Thurman JM, Lucia MS, Ljubanovic D (2005) Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int 67: 524–30

    Article  PubMed  CAS  Google Scholar 

  146. Yamada K, Miwa T, Liu J et al. (2004) Critical protection from renal ischemia reperfusion injury by CD55 and CD59. J Immunol 172: 3869–75

    PubMed  CAS  Google Scholar 

  147. Burne-Taney MJ, Rabb H (2003) The role of adhesion molecules and T cells in ischemic renal injury. Curr Opin Nephrol Hypertens 12: 85–90

    Article  PubMed  CAS  Google Scholar 

  148. De Greef KE, Ysebaert DK, Persy V et al. (2003) ICAM-1 expression and leukocyte accumulation in inner stripe of outer medulla in early phase of ischemic compared to HgCl2-induced ARF. Kidney Int 63: 1697–707

    Article  PubMed  Google Scholar 

  149. Singbartl K, Green SA, Ley K (2000) Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. Faseb J 14: 48–54

    PubMed  CAS  Google Scholar 

  150. Singbartl K, Ley K (2000) Protection from ischemia-reperfusion induced severe acute renal failure by blocking E-selectin. Crit Care Med 28: 2507–14

    Article  PubMed  CAS  Google Scholar 

  151. Hoffmann JN, Vollmar B, Laschke MW et al. (2005) Microcirculatory alterations in ischemia-reperfusion injury and sepsis: effects of activated protein C and thrombin inhibition. Crit Care 9Suppl 4: S33–7

    Article  PubMed  Google Scholar 

  152. Bernard GR, Vincent JL, Laterre PF et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  PubMed  CAS  Google Scholar 

  153. Li FZ, Kimura S, Nishiyama A et al. (2005) Ischemic preconditioning protects postischemic renal function in anesthetized dogs: role of adenosine and adenine nucleotides. Acta Pharmacol Sin 26: 851–9

    Article  PubMed  CAS  Google Scholar 

  154. Grenz A, Eckle T, Zhang H et al. (2007) Use of a hanging-weight system for isolated renal artery occlusion during ischemic preconditioning in mice. Am J Physiol Renal Physiol 292: F475–F485

    Article  PubMed  CAS  Google Scholar 

  155. Lee HT, Kim M, Jan M, Emala CW (2006) Anti-inflammatory and anti-necrotic effects of the volatile anesthetic sevoflurane in kidney proximal tubule cells. Am J Physiol Renal Physiol 291: F67–F78

    Article  PubMed  CAS  Google Scholar 

  156. Lee HT, Ota-Setlik A, Fu Y et al. (2004) Differential protective effects of volatile anesthetics against renal ischemia-reperfusion injury in vivo. Anesthesiology 101: 1313–24

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Cheisson, G. (2007). Protection rénale pharmacologique. In: Jacob, L. (eds) L’insuffisance rénale aiguë. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-71152-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-71152-7_16

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-71151-0

  • Online ISBN: 978-2-287-71152-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics