Skip to main content

Insuffisances rénales aiguës toxiques (dont la chimiothérapie)

  • Chapter
L’insuffisance rénale aiguë

Part of the book series: Le point sur … ((POINT))

  • 563 Accesses

Abstrait

La plupart des insuffisances rénales aiguës (IRA) sont multi-factorielles (1). L’insuffisance rénale d’origine toxique est très souvent une cause associée, et ce mécanisme, associé à l’insuffisance rénale fonctionnelle, est impliqué dans de nombreuses insuffisances rénales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Ronco PM, Flahaut A (1994) Drug-induced end-stage renal disease. N Engl J Med 331: 1711–12

    Article  PubMed  CAS  Google Scholar 

  2. Cittanova ML (2001) Is perioperative renal dysfunction of no consequence? Br J Anaesth 86: 1–3

    Article  Google Scholar 

  3. Brady HR, Brenner BM, Clarkson MR, Lieberthal W (2000) Acute renal failure. In: Brenner BM, ed. The kidney. 6th ed. Brenner & Rector’s p1201

    Google Scholar 

  4. Sivarajan M, Wasse L (1997) Perioperative acute renal failure associated with preoperative intake of ibuprofen. Anesthesiology 86: 1390–2

    Article  PubMed  CAS  Google Scholar 

  5. Jaquenod M, Ronnhedh C, Cousins MJ, Eckstein RP et al. (1998) Factors influencing ketorolac-associated perioperative renal dysfunction. Anest Analg 86: 1090–97

    Article  CAS  Google Scholar 

  6. Fredman B, Zohar E, Golan E, Tillinger M et al. (1999) Diclofenac does not decrease renal blood flow or glomerular filtration in elderly patients undergoing orthopedic surgery. Anesth Analg 88: 149–54

    Article  PubMed  CAS  Google Scholar 

  7. Kim H, Xu M, Lin Y et al. (1999) Renal dysfunction associated with the perioperative use of diclofenac. Anesth Analg 89: 999–1005

    Article  PubMed  CAS  Google Scholar 

  8. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41

    PubMed  CAS  Google Scholar 

  9. Chertow GM, Lazarus JM, Christiansen CL et al. (1997) Preoperative renal risk stratification. Circulation 95: 878–84

    PubMed  CAS  Google Scholar 

  10. Rossat J, Maillard M, Nussberger J et al. (1999) Renal effects of selective cyclooxygenase-2 inhibition in normotensive salt-depleted patients Clin Pharmacol Ther 66: 76–84

    Article  PubMed  CAS  Google Scholar 

  11. Abassi Z, Brodsky S, Gealekman O et al. (2001) Intrarenal expression and distribution of cyclooxygenase isoforms in rats with experimental heart failure. Am J Renal Physiol 280: F43–53

    CAS  Google Scholar 

  12. De Broe ME, Giuliano RA, Verpooten GA (1986) Choice of drug and dose regimen. Two important risk factors for aminoglycosides nephrotoxicity. Am J Med 30: 115–8

    Google Scholar 

  13. Giuliano RA, Verpooten GA, De Broe ME (1986) The effects of dosing strategy on kidney cortical accumulation aminoglycosides in rats. Am J Kidney Dis 8: 297–303

    PubMed  CAS  Google Scholar 

  14. Verpooten GA, Giuliano RA, Pattyn VM et al. (1986) Renal cortical uptake kinetics of gentamicin in rats with impaired renal function. Am J Kidney Dis 8: 304–7

    PubMed  CAS  Google Scholar 

  15. De Broe ME, Paulus GJ, Verpooten GA et al. (1984) Early effects of gentamycin, tobramycin, and amikacin on the human kidney. Kidney Int 25: 643–52

    Article  PubMed  Google Scholar 

  16. Appel GB (1990) Aminoglucoside nephrotoxicity. Am J Med 88: 16S–20S

    Article  PubMed  CAS  Google Scholar 

  17. Sens MA, Hennigar GR, Hazen-Martin DJ et al. (1988) Cultured human proximal tubule cells as a model for aminoglycoside nephrotoxicity. Ann Clin Lab Sci 18: 204–14

    PubMed  CAS  Google Scholar 

  18. Fillastre JP (1999) Is it possible to reduce the incidence of aminoglycosides-induced nephrotoxicity? Bull Acad Natl Med 183: 973–82

    PubMed  CAS  Google Scholar 

  19. Ardaillou R, Ronco P, Rondeau E et al. (2000) Biology of renal cells in culture. In Brenner BM, ed. The kidney 6th ed. Brenner & Rector’s, p93

    Google Scholar 

  20. Olyaeai Y, De Mattos AM, Bennett WM (2000) Prescribing drugs in renal disease. In Brenner BM, ed. The kidney 6th ed. Brenner & Rector’s, p2606

    Google Scholar 

  21. Ducher M, Maire P, Cerutti C et al. (2001) Renal elimination of amikacin and the aging process. Clin PharmacoKinet 40: 947–53

    Article  PubMed  CAS  Google Scholar 

  22. Lautin EM, Freeman NJ, Schoenfeld AH et al. (1991) Radiocontrast-associated renal dysfunction: incidence and risk factors. AJR 157: 59–65

    PubMed  CAS  Google Scholar 

  23. Rudnick MR, Goldfarb S, Wexler L et al. (1995) Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial: the Ioxehol Cooperative Study. Kidney Int 47: 254–61

    Article  PubMed  CAS  Google Scholar 

  24. Parfrey PS, Griffiths SM, Barrett BJ et al. (1989) Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both: a prospective controlled study. N Engl J Med 320: 143–9

    Article  PubMed  CAS  Google Scholar 

  25. Rich MW, Crecelius CA (1990) Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age or older: a prospective study. Arch Intern Med 150: 1237–42

    Article  PubMed  CAS  Google Scholar 

  26. Solomon R, Werner C, Mann D et al. (1994) Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331: 1416–20

    Article  PubMed  CAS  Google Scholar 

  27. Cronin RE, Heinrich WL (2000) Toxic nephropathies. In: Brenner BM, Brenner BM, eds. The Kidney; Philadelphia: WXB Saunders p1563

    Google Scholar 

  28. Weisberg LS, Kurnik PB, Kurnik BR (1994) Risk of radiocontrast nephropathy in patients with and without diabete mellitus. Kidney Int 45: 259–65

    Article  PubMed  CAS  Google Scholar 

  29. Byrd L, Sherman RL (1979) Radiocontrast-induced acute renal failure: a clinical and pathophysiologic review. Medecine (Balt) 58: 270–9

    Article  CAS  Google Scholar 

  30. Mc Carthy CS, Becker JA (1992) Multiple myeloma and contrast media. Radiology 183: 519–21

    CAS  Google Scholar 

  31. Heyman SN, Clark BA, Kaiser N et al. (1992) Radiocontrast agents induce endothelin release in vivo and in vitro. J Am Soc Nephrol 3: 58–65

    Article  PubMed  CAS  Google Scholar 

  32. Heyman SN, Clark BA, Cantley L et al. (1993) Effects of ioversol versus iothalamate on endothelin release and radiocontrast nephropathy. Invest Radiol 28: 313–18

    Article  PubMed  CAS  Google Scholar 

  33. Bakris GL, Burnett JC Jr (1985) A role for calcium in radiocontrast-induced reductions in renal hemodynamics. Kidney Int 27: 465–68

    Article  PubMed  CAS  Google Scholar 

  34. Parvez Z, Rahman MA, Moncada R (1989) Contrast media-induced lipid perioxydation in the rat kidney. Invest Radiol 24: 697–702

    Article  PubMed  CAS  Google Scholar 

  35. Bakris GL, Lass N, Gaber AO et al. (1990) Radiocontrast medium-induced declines in renal function: a role for oxygen-free radicals. Am J Physiol 258: F115–20

    PubMed  CAS  Google Scholar 

  36. Moreau JF, Droz D, Sabto J et al. (1975) Osmotic nephrosis induced by water-soluble triiodinated contrast media in man. Radiology 115: 329–26

    PubMed  CAS  Google Scholar 

  37. Moreau JF, Droz, Noel LH et al. (1980) Tubular nephrotoxicity of water-soluble iodinated contrast media. Invest Radiol 15Suppl 6: 54–60

    Google Scholar 

  38. Erley CM, Duda SH, Schlepckow S et al. (1994) Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int 45: 1425–31

    Article  PubMed  CAS  Google Scholar 

  39. Kapoor A, Sinha N, Sharma RK et al. (1996) Use of dopamine in prevention of contrast induced acute renal failure-a randomised study. Int J Cardiol 53: 233–36

    Article  PubMed  CAS  Google Scholar 

  40. Kurnik BR, Allgren RL, Genter FC et al. (1998) Prospective sutdy of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy. Am J Kidney Dis 31: 674–80

    PubMed  CAS  Google Scholar 

  41. Tepel M, van der Giet M, Schwarzfeld C et al. (2000) Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylsteine. N Engl J Med 343: 180–4

    Article  PubMed  CAS  Google Scholar 

  42. Jones AL, Haynes W, MacGilchrist AJ et al. (1994) N-acetylsteine (NAC) is a potent peripheral vasodilatator. Gut 35Suppl: 5–10

    Google Scholar 

  43. Zhang H, Spapen H, Nguyen DN et al. (1995) Effects of N-acetyl-L-cysteine on regional blood flow during endotoxic shock. Eur Surg Res 27: 292–300

    Article  PubMed  CAS  Google Scholar 

  44. Khachigian LM, Collins T, Fries JW (1997) N-acetyl cysteine blocks mesangial VCAM-1 and NF-kappa B expression in vivo. Am J Pathol 151: 1225–29

    PubMed  CAS  Google Scholar 

  45. Kefer JM, Hanet CE, Boitte S et al. (2003) Acetylcysteine, coronary procedure and prevention of contrast-induced worsening of renal function: which benefit for which patient? Acta Cardiol 58: 555–60

    Article  PubMed  Google Scholar 

  46. Szakmany T, Marton S, Molnar Z (2003) Lack of effect of prophylactic N-acetylcysteine on postoperative organ dysfunction following major abdominal tumour surgery: a randomized, placebo-controlled, double-blinded clinical trial. Anaesth Intensive Care 31: 267–71

    PubMed  CAS  Google Scholar 

  47. Kay J, Chow WH, Chan TM et al. (2003) Acetylcysteine for prevention of acute deterioration of renal function following elective coronary angiography and intervention: a randomized controlled trial. JAMA 289: 553–8

    Article  PubMed  CAS  Google Scholar 

  48. Baker CS, Wragg A, Kumar S et al. (2003) A rapid protocol for prevention of contrast induced renal dysfunction: the RAPPID Study. J Am Coll Cardiol 41: 2114–8

    Article  PubMed  Google Scholar 

  49. Tadros GM, Mouhayar EN, Akinwande AO et al. (2003) Prevention of radiocontrast-induced nephropathy with N-acetylcysteine in patients undergoing coronary angiography. J invasive Cardiol 15: 311–4

    PubMed  Google Scholar 

  50. Lameire NH, De Vriese AS, Vanholder R (2003) Prevention and nondialytic treatment of acute renal failure. Curr Opin Crit Care 9: 481–90

    Article  PubMed  Google Scholar 

  51. Cronin RE (1989) Renal failure following radiologic procedure. Am J Med Sci 296: 342–56

    Article  Google Scholar 

  52. Messana JM, Cieslinski DA, Nguyen VD et al. (1988) Comparison of the toxicity of the radiocontrast agents, iopamidol and diatrizoate, to rabbit renal proximal tubule cells in vitro. J Pharmacol Exp Ther 244: 1139–44

    PubMed  CAS  Google Scholar 

  53. Barrett BJ, Carlisle EJ (1993) Metaanalysis of the relative nephrotoxicity of high. and low-osmolality iodinated contrasted media. Radiology 188: 171–8

    PubMed  CAS  Google Scholar 

  54. Aspelin P, Aubry P, Fransson SG et al. (2003) Nephrotoxic effects en high-risk patients undergoing angiography. N Engl J Med 348: 491–9

    Article  PubMed  CAS  Google Scholar 

  55. Moranne O, Willoteaux S, Pagniez D et al. (2005) Effects of iodinated contrast agents on residual renal function in PD patients. Nephrol Dial Transplant 21: 1040–5

    Article  PubMed  Google Scholar 

  56. Brigori C, Colombo A, Airoldi F et al. (2006) Gadolinium-based contrast agents and nephrotoxicity in patients undergoing coronary artery procedures. Catheter Cardiovasc Interv 8: 175–80

    Article  Google Scholar 

  57. Coronel B, Laurent V, Mercatello A et al. (1994) L’hydroxyéthylamidon peut-il être utilisé lors de la réanimation des sujets en mort cérébrale pour don d’organe ? Ann Fr Anesth Réanim 13: 10–16

    PubMed  CAS  Google Scholar 

  58. Legendre C, Thervet E, Page B et al. (1993) Hydroxyethylstarch and osmotic-nephrosislike lesions in kidney transplantation. Lancet 342: 248–9

    Article  PubMed  CAS  Google Scholar 

  59. Cittanova ML, Leblanc I, Legendre Ch et al. (1996) Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 348: 1620–2

    Article  PubMed  CAS  Google Scholar 

  60. Fournier A, Watchi JM, Réveillaud RJ (1968) Les néphroses dites osmotiques ou vacuolisations hydropiques diffuses des tubes proximaux. Actualités néphrologiques, Necker

    Google Scholar 

  61. Schortgen F, Lacherade JC, Bruneel F et al. (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357: 911–16

    Article  PubMed  CAS  Google Scholar 

  62. Waldhausen P, Kiesewetter H, Leipnitz G et al. (1991) Hydroxyethylstarch-induced transient renal failure in preexisting glomerular damage. Acta Med Austriaca 18Suppl 1: 52–55

    PubMed  Google Scholar 

  63. Dickemann MJ, Filipovic M, Schneider MC et al. (1998) Hydroxyethylstarch-associated transient acute renal failure after epidural anaesthesia for labour analgesia and Caesarean section. Nephrol Dial Transplant 13: 2706

    Article  Google Scholar 

  64. Lipfert B, Standl T, Dullmann J et al. (1999) Histology and ultrastructure of liver and kidney following blood exchange with ultrapurified, polymerised bovine hemoglobin in comparison with hydroxyethyl starch. Lab Invest 79: 573–82

    PubMed  CAS  Google Scholar 

  65. Wood MJ (2000) Comparative safety of teicoplanine and vancomycin. J Chemother 12Suppl 5: 21–5

    PubMed  Google Scholar 

  66. Wood MJ (1996) The comparative efficacity and safety of teicoplanin and vancomycin. J Antimicrob Chemother 37: 209–22

    Article  PubMed  CAS  Google Scholar 

  67. Cittanova ML, Zubicki A, Savu C et al. (2001) The chronic inhibition of angiotensin-converting enzyme impairs postoperative renal function. Anesth Analg 93: 1111–5

    Article  PubMed  CAS  Google Scholar 

  68. Colson P, Ribstein J, Minran A et al. (1990) Effects of angiotensin converting enzyme inhibition on blood pressure and renal function during open heart surgery. Anesthesiology 72: 23–7

    Article  PubMed  CAS  Google Scholar 

  69. Licker M, Bednarkiewicz M, Neidhart P et al. (1996) Preoperative inhibition of angiotensin-converting enzyme improves systemic and renal haemodynamic changes during aortic abdominal surgery. Br J Anaesth 76: 632–9

    PubMed  CAS  Google Scholar 

  70. Licker M, Neidhart P, Lustenberger (1996) Long-term angiotensin-converting enzyme inhibitor treatment attenuates adrenergic responsiveness without altering hemodynamic control in patients undergoing cardiac surgery. Anesthesiology 84: 789–800

    Article  PubMed  CAS  Google Scholar 

  71. Tuman KJ, McCarthy RJ, O’Connor CJ et al. (1995) Angiotensin-converting enzyme inhibitors increase vasoconstrictor requirements after cardiopulmonary bypass. Anesth Analg 80: 473–9

    Article  PubMed  CAS  Google Scholar 

  72. Licker M, Schweizer A, Höhn L et al. (1999) Chronic angiotensin converting inhibition does not influence renal hemodynamic and function during cardiac surgery. Can J Anaesth 46: 626–34

    Article  PubMed  CAS  Google Scholar 

  73. Coriat P, Richer C, Douraki T et al. (1994) Influence of chronic angiotensin-conversing enzyme inhibition on anesthetic induction. Anesthesiology 81: 299–307

    Article  PubMed  CAS  Google Scholar 

  74. Ryckwaert F, Colson P (1997) Hemodynamic effects of anesthesia in patients with ischemic heart failure chronically treated with angiotensin-converting enzyme inhibitors. Anesth Analg 84: 945–9

    Article  PubMed  CAS  Google Scholar 

  75. Brown CB, Ogg CS, Cameron JS (1981) High dose furosemide in acute renal failure: a controlled failure. Clinical Nephrology 15: 90–96

    PubMed  CAS  Google Scholar 

  76. Kleinknecht D, Ganeval D, Gonzales-Duque LA et al. (1976) Furosemide in acute oliguric renal failure. A controlled trial. Nephron 17: 51–58

    Article  PubMed  CAS  Google Scholar 

  77. Shilliday IR, Quinn KJ, Allison ME (1997) Loop diuretics in the management of acute renal failure: a prospective, double-blind, placebo-controlled, randomized study. Nephrol Dial Transplant 12: 2592–96

    Article  PubMed  CAS  Google Scholar 

  78. Lassnigg A, Donner E, Grubhofer G et al. (2000) Lack of renoprotective effects of dopamine and furosemide during cardiac surgery. J Am Soc Nephrol 11: 97–104

    PubMed  CAS  Google Scholar 

  79. Denton MD, Chertow GM, Brady HR (1996) “Renal dose” dopamine for the treatment of acute renal failure: scientific rationale experimental studies and clinical trials. Kidney Int 49: 4–14

    Article  Google Scholar 

  80. Duke GJ, Briedis JH, Weaver RA (1994) Renal support in critically ill patients: low dose dopamine or low dose dobutamine. Crit Care Med 22: 1919–25

    Article  PubMed  CAS  Google Scholar 

  81. Swygert TH, Roberts LC, Valek TR et al. (1991) Effects of intraoperative low dose dopamine on renal function in liver transplant recipients. Anesthesiology 75: 571–6

    Article  PubMed  CAS  Google Scholar 

  82. Mazze RI, Calverley RK, Smith NT (1977) Inorganic fluoride nephrotoxicity: Prolonged enflurane and halothane anesthesia in volunteers. Anesthesiology 46: 265–71

    Article  PubMed  CAS  Google Scholar 

  83. Frink EJ, Malan TP, Isner RJ et al. (1994) Renal concentrating function with prolonged sevoflurane or enflurane anesthesia in volunteers. Anesthesiology 80: 1019–25

    Article  PubMed  CAS  Google Scholar 

  84. Roman RJ, Carter JR, North WC et al. (1977) Renal tubular sites of action of fluoride in Fischer 344 rats. Anesthesiology 46: 260–64

    Article  PubMed  CAS  Google Scholar 

  85. Whitford GM, Taves DR (1973) Fluoride-induced diuresis: Renal-tissue solute concentrations, functional, hemodynamic, and histologic correlates in the rat. Anesthesiology 39: 416–27

    Article  PubMed  CAS  Google Scholar 

  86. Mazze RI, Calverley RK, Smith NT (1977) Inorganic fluoride nephrotoxicity: Prolonged enflurane and halothane anesthesia in volunteers. Anesthesiology 46: 265–71

    Article  PubMed  CAS  Google Scholar 

  87. Higuchi H, Sumikura H, Sumita S et al. (1995) Renal function in patients with high serum fluoride concentrations after prolonged sevoflurane anesthesia. Anesthesiology 83: 449–58

    Article  PubMed  CAS  Google Scholar 

  88. Wallin JD, Kaplan RA (1977) Effect of sodium fluoride on concentrating and diluting ability in the rat. Am J Physiol 232: 335–40

    Google Scholar 

  89. Frascino JA (1972) Effect of inorganic fluoride on the renal concentrating mechanism: Possible nephrotoxicity in man. J Lab Clin Med 79: 192–203

    PubMed  CAS  Google Scholar 

  90. Kobayashi Y, Ochiai R, Takeda J et al. (1992) Serum and urinary inorganic fluoride concentrations after prolonged inhalation of sevoflurane in humans. Anesth Analg 74: 753–7

    Article  PubMed  CAS  Google Scholar 

  91. Cittanova ML, Lelongt B, Verpont MC et al. (1996) Fluoride ion toxicity in human kidney collecting duct cells. Anesthesiology 84: 428–35

    Article  PubMed  CAS  Google Scholar 

  92. Morio M, Fujii K, Satoh N et al. (1992) Reaction of sevoflurane and its degradation products with soda lime. Anesthesiology 77: 1155–64

    Article  PubMed  CAS  Google Scholar 

  93. Higuchi H, Sumita S, Wada H et al. (1998) Effects of sevoflurane and isoflurane on renal function and on possible markers of toxicity. Anesthesiology 89: 307–22

    Article  PubMed  CAS  Google Scholar 

  94. Kharasch ED, Schroeder JL, Bammler T et al. (2006) Gene expression profiling of nephrotoxicity from the sevoflurane degradation product fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (“compound A”) in rats. Toxicol Sci 90: 419–31

    Article  PubMed  CAS  Google Scholar 

  95. Cronin RE, Henrich WL (2000) Toxic Nephropathies. In: Brenner BM, ed. The kidney. 6th ed. Brenner & Rector’s, p1563

    Google Scholar 

  96. Rezzani R (2006) Exploring cyclosporine A-side effects and the protective role-played by antioxidants: the morphological and immunohistochemical studies. Histol Histopathol 21: 301–16

    PubMed  CAS  Google Scholar 

  97. Ciroldi M, Darmon M, Azoulay E (2005) Insuffisance rénale aiguë chez le malade d’oncohématologie. Réanimation 14: 508–18

    Article  Google Scholar 

  98. Kawai Y, Nakao T, Kunimura N, Kohda Y et al. (2006) Relationship of intracellular calcium and oxygen radicals to Cisplatin-related renal injury. J Pharmacol Sci 100: 65–72

    Article  PubMed  CAS  Google Scholar 

  99. Widemann BC, Balis FM, Kempf-Bielack B et al. (2004) High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer 100: 2222–32

    Article  PubMed  CAS  Google Scholar 

  100. Benoit DD, Vandewoude KH, Decruyenaere JM et al. (2003) Outcome and early prognostic indicators in patients with a hematologic malignancy admitted to the intensive care unit for a life-threatening complication. Int Care Med 31: 104–112

    Google Scholar 

  101. Azoulay E, Moreau D, Alberti C et al. (2000) Predictors of short-term mortality in critically ill patients with solid malignancies. Intens Care Med 26: 1817–23

    Article  CAS  Google Scholar 

  102. Lewis RE, Wiederhold NP, Prince RA et al. (2006) In vitro pharmacodynamics of rapid versus continuous infusion of amphotericin B against Candida species in the presence of human serum albumin. J Antimicrob Chemother 57: 288–93

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Cittanova-Pansard, M.L. (2007). Insuffisances rénales aiguës toxiques (dont la chimiothérapie). In: Jacob, L. (eds) L’insuffisance rénale aiguë. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-71152-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-71152-7_10

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-71151-0

  • Online ISBN: 978-2-287-71152-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics