Skip to main content

Le péritoine lors de l’inflammation

  • Chapter
Les infections intra-abdominales aiguës

Part of the book series: Le point sur … ((POINT))

Abstrait

Malgré les progrès des techniques diagnostiques, de la chirurgie et de la prise en charge réanimatoire, et l’utilisation de traitements antibiotiques à large spectre, les taux de mortalité des péritonites sévères restent élevés, pouvant atteindre 60 % à 80 % (1, 2). Les travaux réalisés ces dernières années ont néanmoins permis de mieux comprendre les mécanismes de contrôle de la réponse immune et inflammatoire péritonéale; en particulier, de montrer les rôles respectifs des cellules résidentes de la cavité péritonéales — essentiellement cellules mésothéliales et macrophages — et des cellules recrutées — polynucléaires neutrophiles et cellules mononucléées — dans l’initiation et l’amplification de cette réponse immune et inflammatoire péritonéale. Dans ce chapitre, nous ne traiterons que des mécanismes de l’inflammation péritonéale des péritonites secondaires et non pas des péritonites primaires, des surinfections d’ascites, ni même des phénomènes inflammatoires chroniques engendrés par la dialyse péritonéale. Pour se faire, il sera tout particulièrement fait référence à des modèles murins de ligature cæcale et ponction (CLP). Ces modèles induisent une péritonite infectieuse polymicrobienne de sévérités différentes selon la taille des ponctions réalisées dans le cæcum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Bosscha K, Reijinders K, Hulstaert PF et al. (1997) Prognostic scoring systems to predict outcome in peritonitis and intra-abdominal sepsis. Br J Surg 84: 1532–4

    Article  PubMed  CAS  Google Scholar 

  2. Holzheimer RG, Muhrer KH, L’Allemand N et al. (1991) Intraabdominal infections: classification, mortality, scoring and pathophysiology. Infection 19: 447

    Article  PubMed  CAS  Google Scholar 

  3. Hall JC, Heel KA, Papadimitriou JM, Platell C (1998) The pathophysiology of peritonitis. Gastroenterology 114: 185–96

    Article  PubMed  CAS  Google Scholar 

  4. Broche F, Tellado JM (2001) Defense mechanisms of the peritoneal cavity. Curr Opin in Crit Care 7: 105–16

    Article  CAS  Google Scholar 

  5. Topley N, Libereck T, Davenport A et al. (1996) Activation of inflammation and leukocyte recruitment into the peritoneal cavity. Kidney Int 50Suppl 56: S17–S21

    Google Scholar 

  6. Topley N (1995) The host initial response to peritoneal infection: The pivotal role of the mesothelial cell. Perit Dial Intern 15: 116–7

    CAS  Google Scholar 

  7. Li FK, Davenport A, Robson RL et al. (1998) Leukocyte migration across human peritoneal mesothelial cells is dependent on directed chemokine secretion and ICAM-1. Kidney Int 54: 2170–83

    Article  PubMed  CAS  Google Scholar 

  8. Visser CE, Steenbergen JJE, Betjes MGH et al. (1995) Interleukin-8 production by human mesothelial cells after direct stimulation with Staphylococci. Infect Immun 10: 4206–9

    Google Scholar 

  9. Zeillemaker AM, Hoynck van Papendrecht AA, Hart MH et al. (1996) Peritoneal interleukin-8 in acute appendicitis. J Surg Res 62: 273–7

    Google Scholar 

  10. Zeillemaker AM, Mul FP, Hoynck van Papendrecht AA et al. (1995) Polarized secretion of interleukin-8 by human mesothelial cells: a role in neutrophil migration. Immunology 84: 227–32

    Google Scholar 

  11. Topley N, Brown Z, Jorres A et al. (1993) Human peritoneal mesothelial cells synthesize interleukin-8. Synergistic induction by interleukin-1 beta and tumor necrosis factor-alpha Am J Pathol 142: 1876–86

    PubMed  CAS  Google Scholar 

  12. Tekstra J, Beekhuizen H, Van De Gevel JS et al. (1999) Infection of human endothelial cells with Staphylococcus aureus induces the production of monocyte chemotactic protein-1 (MCP-1) and monocyte chemotaxis. Clin Exp Immunol 117: 489–95

    Article  PubMed  CAS  Google Scholar 

  13. Visser CE, Tekstra J, Brouwer-Steenbergen JJ et al. (1998) Chemokines produced by mesothelial cells: huGRO-alpha, IP-10, MCP-1 and RANTES. Clin Exp Immunol 112: 270–5

    Article  PubMed  CAS  Google Scholar 

  14. Betjes MG, Tuk CW, Struijk DG et al. (1993) Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor-alpha, interleukin-1, and medium conditioned by macrophages cocultured with Staphylococcus epidermidis. J Infect Dis 168: 1202–10

    PubMed  CAS  Google Scholar 

  15. Jonjic N, Peri G, Bernasconi S et al. (1992) Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells. J Exp Med 176: 1165–74

    Article  PubMed  CAS  Google Scholar 

  16. Liberek T, Topley N, Luttmann W, Williams JD (1996) Adherence of neutrophils to human peritoneal mesothelial cells: role of intercellular adhesion molecule-1. J Am Soc Nephrol 7: 208–17

    PubMed  CAS  Google Scholar 

  17. Brauner A, Hylander B, Wretlind B (1993) Interleukin-6 and interleukin-8 dialysate and serum from patients on continuous ambulatory peritoneal dialysis. Am J Kidney 22: 430–5

    CAS  Google Scholar 

  18. Betjes MGH, Tuk CW, Struijk DG et al. (1993) Immuno-effector characteristics of peritoneal cells during CAPD treatment: A longitudinal study. Kidney Int 43: 641–8

    Article  PubMed  CAS  Google Scholar 

  19. Betjes MGH, Tuk CW, Visser CE et al. (1994) Analysis of peritoneal cellular immune system during CAPD shortly before clinical peritonitis. Nephrol Dial Transplant 9: 684–92

    PubMed  CAS  Google Scholar 

  20. Bernheiden M, Heinrich JM, Minigo G et al. (2001) LBP, CD14, TLR4 and the murine innate immune response to a peritoneal Salmonella infection. J Endotoxin Res 7(6): 447–50

    PubMed  CAS  Google Scholar 

  21. Yang K, Dorner BG, Merkel U et al. (2002) Neutrophil influx in response to a peritoneal infection with Salmonella is delayed in lipopolysaccharide-binding protein or CD14-deficient mice. J Immunol 169: 4475–80

    PubMed  CAS  Google Scholar 

  22. Suassuna JHR, Das Neves FC, Hartley RB et al. (1994) Immunohistochemical studies of the peritoneal memebrane and infiltrating cells in normal subjects and in patients on CAPD. Kidney Int 46: 443–54

    Article  PubMed  CAS  Google Scholar 

  23. Frohlich D, Eiber RM, Jochum M, Billing A (1997) Perioperative pattern of peritoneal interleukin-8, tumor necrosis factor-α, and granulocyte elastase release in human secondary peritonitis. Cytokine 9: 288

    Article  PubMed  CAS  Google Scholar 

  24. Zemel D, Krediet RT, Koomen GCM et al. (1994) Interleukin-8 during peritonitis in patients treated with CAPD; an in vivo model of acute inflammation. Nephrol Dial Transplant 9: 169–74

    PubMed  CAS  Google Scholar 

  25. Walley KR, Lukacs NW, Standiford TJ et al. (1997) Elevated levels of macrophage inflammatory protein 2 in severe murine peritonitis increse neutrophil recruitment and mortality. Infect Immun 65: 3847–51

    PubMed  CAS  Google Scholar 

  26. Kaplanski G, Marin V, Montero-Julian F et al. (2003) IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 24: 25–9

    Article  PubMed  CAS  Google Scholar 

  27. Ness TL, Hogaboam CM, Strieter RM, Kunkel SL (2003) Immunomodulatory role of CXCR2 during experimental septic peritonitis. J Immunol 171: 3775–84

    PubMed  CAS  Google Scholar 

  28. Greenberger MJ, Kunkel SL, Strieter RM et al. (1996) IL-12 gene therapy protects mice in lethal Klebsiella pneumonia. J Immunol 157: 3006–12

    PubMed  CAS  Google Scholar 

  29. Matsukawa A, Hogaboam CM, Lukacs NW et al. (1999) Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: Cross-talk between MCP-1 and leukotriene B4. J Immunol 163: 6148–54

    PubMed  CAS  Google Scholar 

  30. Scott MJ, Cheadle WG, Hoth JJ et al. (2004) Leukotriene B4 receptor (BLT-1) modulates neutrophil influx into the peritoneum but not the lung and liver during surgically induced bacterial peritonitis in mice. Clin Diagn Lab Immunol 11: 936–41

    Article  PubMed  CAS  Google Scholar 

  31. Walley KR, Lukacs NW, Standiford TJ et al. (1996) Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infect Immun 64: 4733–8

    PubMed  CAS  Google Scholar 

  32. Orlofsky A, Lin EY, Prystowsky MB (1994) Selective induction of the beta chemokine C10 by IL-4 in mouse macrophages. J Immunol 152: 5084–91

    PubMed  CAS  Google Scholar 

  33. Ness TL, Carpenter KJ, Ewing JL et al. (2004) CCR1 and CC chemokine ligand 5 interactions exacerbate innate immune responses during sepsis. J Immunol 173: 6938–48

    PubMed  CAS  Google Scholar 

  34. Matsukawa A, Hogaboam CM, Lukacs NW et al. (2000) Endogenous MCP-1 influences systemic cytokine balance in a murine model of acute septic peritonitis. Exp Mol Pathol 68: 77–84

    Article  PubMed  CAS  Google Scholar 

  35. Matsukawa A, Hogaboam CM, Lukacs NW et al. (2000) Pivotal role of the cc chemokine, macrophage-derived chemokine, in the innate immune response. J Immunol 164: 5362–8

    PubMed  CAS  Google Scholar 

  36. Floche Sb, Agrawal H, Schmitz D et al. (2006) Dendritic cells during polymicrobial sepsis rapidly mature but fail to initiate a protective TH1-type immune response. J Leukoc Biol 79: 473–81

    Article  Google Scholar 

  37. Ding Y, Chung CS, Newton S et al. (2004) Polymicrobial sepsis induces divergent effects on splenic and peritoneal dendritic cell function in mice. Shock 22: 137–44

    Article  PubMed  Google Scholar 

  38. Echtenacher B, Mannel DN, Hultner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381: 75–7

    Article  PubMed  CAS  Google Scholar 

  39. Mercer-Jones MA, Shrotri MS, Heinzelmann M et al. (1999) Regulation of early peritoneal neutrophil migration by macrophage inflammatory protein-2 and mast cells in experimental peritonitis. J Leukoc Biol 65: 249–55

    PubMed  CAS  Google Scholar 

  40. Maurer M, Echtenacher B, Hultner L et al. (1998) The c-kit ligand, Stem Celle Factor, can enhance innate immunity through effects on mast cells. J Exp Med 188: 2343–8

    Article  PubMed  CAS  Google Scholar 

  41. Bone-Larson CL, Hogaboam CM, Steinhauser ML et al. (2000) Novel protective effects of stem cell factor in a murine model of acute septic peritonitis. Dependence on MCP-1. Am J Pathol 157: 1177–86

    PubMed  CAS  Google Scholar 

  42. Maurer M, Wedemeyer, Metz M et al. (2004) Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature 432: 512–6

    Article  PubMed  CAS  Google Scholar 

  43. Metzger DW, Raeder R, Van Cleave VH, Boyle MD (1995) Protection of mice from group A streptococcal skin infection by interleukin-12. J Infect Dis 171: 1643–5

    PubMed  CAS  Google Scholar 

  44. Sewnath ME, Olszyna DP, Birjmohun R et al. (2001) IL-10-deficient mice demonstrate multiple organ failure and increased mortality during Escherichia coli peritonitis despite an accelerated bacterial clearance. J Immunol 166: 6323–31

    PubMed  CAS  Google Scholar 

  45. Matsukawa A, Kaplan MH, Hogaboam CM et al. (2001) Pivotal role of signal transducer and activator of transcription (Stat)4 and Stat6 in the innate immune response during sepsis. J Exp Med 193: 679–88

    Article  PubMed  CAS  Google Scholar 

  46. Kato T, Murata A, Ishsida H et al. (1995) Interleukin-10 reduces mortality from severe peritonitis in mice. Antimocrob Agents Chemother 39: 1336–40

    CAS  Google Scholar 

  47. Van der Poll T, Marchant A, Buunman WA et al. (1995) Endogenous IL-10 protects mice from death during septic peritonitis. J Immunol 155: 5397

    PubMed  Google Scholar 

  48. Eskandari MK, Bolgos G, Miller C et al. (1992) Anti-tumor necrosis factor antibody therapy fails to prevent lethality after cecal ligation and puncture or endotoxinemia. J Immunol 148: 2724–30

    PubMed  CAS  Google Scholar 

  49. Matsukawa A, Hogaboam CM, Lukacs NW et al. (2000) Expression and contribution of endogenous IL-13 in an experimental model of sepsis. J Immunol 164: 2738–44

    PubMed  CAS  Google Scholar 

  50. Matsukawa A, Takeda K, Kudo S et al. (2003) Aberrant inflammation and lethalithy to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J Immunol 171: 6198–205

    PubMed  CAS  Google Scholar 

  51. Echtenacher B, Freudenberg MA, Jack RS, Mannel DN (2001) Differences in innate defense mechanisms in endotoxinemia and polymicrobial septic peritonitis. Infect Immun 69: 7271–6

    Article  PubMed  CAS  Google Scholar 

  52. Feterowski C, Emmanuilidis K, Miethke T et al. (2003) effects of functional Toll-like receptor-4 mutations on the immune response to human and experimental sepsis. Immunology 109: 426–31

    Article  PubMed  CAS  Google Scholar 

  53. Matsukawa A, Kudo S, Maeda T et al. (2005) STAT3 in resident macrophages as a receptor protein of inflammatory response. J Immunol 175: 3354–59

    PubMed  CAS  Google Scholar 

  54. Matsukawa A, Kudoh S, Sano G et al. (2006) Absence of CC chemokine receptor 8 enhances innate immunity during septic peritonitis. FASEB J 20: 302–4

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Moine, P. (2007). Le péritoine lors de l’inflammation. In: Mallédant, Y., Seguin, P. (eds) Les infections intra-abdominales aiguës. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-69814-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-69814-9_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-69812-5

  • Online ISBN: 978-2-287-69814-9

Publish with us

Policies and ethics