Skip to main content

Œdème cérébral: physiopathologie et diagnostic

  • Chapter
La réanimation neurochirurgicale

Part of the book series: Le point sur … ((POINT))

  • 707 Accesses

Abstrait

L’œdème cérébral (OC) est défini par l’accumulation nette d’eau et de solutés dans le secteur intracellulaire et/ou dans le secteur extracellulaire cérébral, à l’origine d’une augmentation de volume de la masse cérébrale. Il existe de nombreuses façons de classer l’OC: selon son type (cytotoxique, vasogénique, interstitiel, osmotique), sa localisation (intracellulaire ou extracellulaire), son atteinte tissulaire (substance grise ou blanche), la présence ou non d’une rupture de la barrière hémato-encéphalique (BHE), le mécanisme en cause. À l’heure actuelle, la classification proposée en 1967 par Igor Klatzo reste la plus simple et la mieux admise par tous (1, 2). Cette classification est basée sur deux types d’OC: l’œdème cytotoxique, qu’il est préférable d’appeler œdème cellulaire, est lié à une atteinte de la perméabilité membranaire de la cellule, conduisant à l’accumulation intracellulaire d’eau et d’ions (Na+, Ca++); l’œdème vasogénique, où l’ouverture de la BHE provoque un passage d’eau, d’électrolytes et de protéines dans le secteur interstitiel. Certains auteurs distinguent aussi l’œdème osmotique, lié à un gradient osmotique de part et d’autre de la BHE, combinant un œdème cellulaire et un œdème interstitiel pauvre en protéines (BHE intacte) (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Klatzo I (1967) Presidental address. Neuropathological aspects of brain edema. J Neuropathol Exp Neurol 26: 1–14

    Article  PubMed  CAS  Google Scholar 

  2. Kimelberg HK (2004) Water homeostasis in the brain: basic concepts. Neuroscience 129: 851–60

    Article  PubMed  CAS  Google Scholar 

  3. Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129: 1019–27

    Article  CAS  Google Scholar 

  4. Gotoh O, Asano T, Koide T, Takakura K (1985) Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: The time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke 16: 101–9

    PubMed  CAS  Google Scholar 

  5. Barzo P, Marmarou A, Fatouros P et al. (1997) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87: 900–7

    PubMed  CAS  Google Scholar 

  6. Marmarou A, Fatouros PP, Barzo P et al. (2000) Contribution of edema and cerebral blood volume to traumatic brain swelling in head-injured patients. J Neurosurg 93: 183–93

    PubMed  CAS  Google Scholar 

  7. Frei HJ, Wallenfang T, Poll W et al. (1973) Regional cerebral blood flow and regional metabolism in cold induced oedema. Acta Neurochir 29: 15–28

    Article  CAS  Google Scholar 

  8. Marmarou A (1994) Traumatic brain edema: an overview. Acta Neurochir Suppl 60: 421–4

    CAS  Google Scholar 

  9. Reulen HJ, Tsuyumu M, Tack A et al. (1978) Clearance of edema fluid into cerebrospinal fluid. A mechanism for resolution of vasogenic brain edema. J Neurosurg 48: 754–64

    PubMed  CAS  Google Scholar 

  10. Cserr HF, DePasquale M, Patlak CS (1987) Regulation of brain water and electrolytes during acute hyperosmolality in rats. Am J Physiol 253: F522–9

    PubMed  CAS  Google Scholar 

  11. McManus ML, Churchwell KB, Strange K (1995) Regulation of cell volume in health and disease. N Engl J Med 333: 1260–6

    Article  PubMed  CAS  Google Scholar 

  12. Venero JL, Vizuete ML, Machado A, Cano J (2001) Aquaporins in the central nervous system. Prog Neurobiol 63: 321–36

    Article  PubMed  CAS  Google Scholar 

  13. Manley GT, Fujimura M, Ma T et al. (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6: 159–63

    Article  PubMed  CAS  Google Scholar 

  14. Manley GT, Binder DK, Papadopoulos MC, Verkman AS (2004) New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 129: 983–91

    Article  PubMed  CAS  Google Scholar 

  15. Kimelberg HK (1995) Current concepts of brain edema. Review of laboratory investigations. J Neurosurg 83: 1051–9

    PubMed  CAS  Google Scholar 

  16. Payen JF, Fauvage B, Falcon D, Lavagne P (2003) Œdème cérébral par lésion de la barrière hématoencéphalique: mécanismes et diagnostic. Ann Fr Anesth Reanim 22: 220–5

    Article  PubMed  CAS  Google Scholar 

  17. MacKenzie ET, Strandgaard S, Graham DI et al. (1976) Effects of acutely induced hypertension in cats on pial arteriolar caliber, local cerebral blood flow, and the blood-brain barrier. Circ Res 39: 33–41

    PubMed  CAS  Google Scholar 

  18. Kogure K, Busto R, Scheinberg P (1981) The role of hydrostatic pressure in ischemic brain edema. Ann Neurol 9: 273–82

    Article  PubMed  CAS  Google Scholar 

  19. Hosomi N, Mizushige K, Kitadai M et al. (1999) Induced hypertension treatment to improve cerebral ischemic injury after transient forebrain ischemia. Brain Res 835: 188–9.

    Article  PubMed  CAS  Google Scholar 

  20. Bouma GJ, Muizelaar JP (1992) Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma 9Suppl 1: S333–48

    PubMed  Google Scholar 

  21. Rosner MJ, Rosner SD, Johnson AH (1995) Cerebral perfusion pressure: management protocol and clinical results. J Neurosurg 83: 949–62

    PubMed  CAS  Google Scholar 

  22. Eker C, Asgeirsson B, Grande PO et al. (1998) Improved outcome after severe head injury with a new therapy based on principles for brain volume regulation and preserved microcirculation. Crit Care Med 26: 1881–6

    PubMed  CAS  Google Scholar 

  23. Robertson CS (2001) Management of cerebral perfusion pressure after traumatic brain injury. Anesthesiology 95: 1513–7

    Article  PubMed  CAS  Google Scholar 

  24. Schilling L, Wahl M (1999) Mediators of cerebral edema. Adv Exp Med Biol 474: 123–41

    PubMed  CAS  Google Scholar 

  25. Marmarou A, Nichols J, Burgess J et al. (1999) Effects of the bradykinin antagonist Bradycor (deltibant, CP-1027) in severe traumatic brain injury: results of a multi-center, randomized, placebo-controlled trial. American Brain Injury Consortium Study Group. J Neurotrauma 16: 431–44

    Article  PubMed  CAS  Google Scholar 

  26. Pruneau D, Chorny I, Benkovitz V et al. (1999) Effect of LF 16-0687MS, a new nonpeptide bradykinin B2 receptor antagonist, in a rat model of closed head trauma. J Neurotrauma 16: 1057–65

    PubMed  CAS  Google Scholar 

  27. Plesnila N, Schulz J, Stoffel M et al. (2001) Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J Neurotrauma 18: 1049–58

    Article  PubMed  CAS  Google Scholar 

  28. Stanimirovic D, Satoh K (2000) Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol 10: 113–26

    Article  PubMed  CAS  Google Scholar 

  29. Pleines UE, Stover JF, Kossmann T et al. (1998) Soluble ICAM-1 in CSF coincides with the extent of cerebral damage in patients with severe traumatic brain injury. J Neurotrauma 15: 399–409

    PubMed  CAS  Google Scholar 

  30. Rapoport SI (1988) Osmotic opening of the blood-brain barrier. Ann Neurol 24: 677–84

    Article  PubMed  CAS  Google Scholar 

  31. Zunkeler B, Carson RE, Olson J et al. (1996) Quantification and pharmacokinetics of blood-brain barrier disruption in humans. J Neurosurg 85: 1056–65

    PubMed  CAS  Google Scholar 

  32. Siegal T, Rubinstein R, Bokstein F et al. (2000) In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J Neurosurg 92: 599–605

    PubMed  CAS  Google Scholar 

  33. Fujimura M, Gasche Y, Morita-Fujimura Y et al. (1999) Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 842: 92–100

    Article  PubMed  CAS  Google Scholar 

  34. Kataoka Y, Cui Y, Yamada H et al. (2000) Neovascularization with blood-brain barrier breakdown in delayed neuronal death. Biochem Biophys Res Commun 273: 637–41

    Article  PubMed  CAS  Google Scholar 

  35. Pichiule P, Chavez JC, Xu K, LaManna JC (1999) Vascular endothelial growth factor upregulation in transient global ischemia induced by cardiac arrest and resuscitation in rat brain. Brain Res Mol Brain Res 74: 83–90

    Article  PubMed  CAS  Google Scholar 

  36. Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997) Biphasic pathophysiological response of vasogenic and cellular edema in traumatic brain swelling. Acta Neurochir Suppl 70: 119–22

    Google Scholar 

  37. Lescot T, Carpentier A, Galanaud D, Puybasset L (2005) IRM cérébrale en neurotraumatologie. Ann Fr Anesth Reanim 24: 516–21

    PubMed  CAS  Google Scholar 

  38. Pasco-Papon A, Darabi D, Mas-Caradec MC et al. (2005) Apports de l’IRM conventionnelle et de l’IRM de diffusion a la phase aiguë du traumatisme cranien grave. Ann Fr Anesth Reanim 24: 510–5

    PubMed  CAS  Google Scholar 

  39. Huisman TA, Sorensen AG, Hergan K et al. (2003) Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomogr 27: 5–11

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Payen, JF., Francony, G., Fauvage, B. (2007). Œdème cérébral: physiopathologie et diagnostic. In: Bruder, N., Ravussin, P., Bissonnette, B. (eds) La réanimation neurochirurgicale. Le point sur …. Springer, Paris. https://doi.org/10.1007/978-2-287-68199-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-68199-8_2

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-68198-1

  • Online ISBN: 978-2-287-68199-8

Publish with us

Policies and ethics