Skip to main content
  • 1403 Accesses

Abstrait

La flore intestinale humaine, autrement appelée microflore ou microbiote, est un consortium bactérien complexe dont le rôle dans la santé est crucial. Alors que le nombre de cellules eucaryotes dans notre organisme est de 1013, le nombre de cellules bactériennes et fongiques —dont la majorité est présente au niveau colique—est estimé à 1014; on estime qu’environ 500 espèces coexistent dans cet habitat, mais une analyse réalisée à partir du séquençage de ľADN ribosomal 16S présent dans les selles ďun sujet a révélé qu’il n’existerait en fait que moins de 150 unités taxonomiques opérationnelles (définies comme différant de plus de 2% dans la séquence ďADNr-16S) (1, 2). On estime de plus qu’environ 40 espèces représentent 99% de toutes les bactéries isolées, avec une prédominance des anaérobies par rapport aux aérobies (rapport de 10 à 1 000 sur 1) et parmi les anaérobies une prédominance des Bacteroides (Gram négatif) et Clostridium (Gram positif) (3, 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJ (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl Environ Microbiol 67: 4399–406

    Article  PubMed  CAS  Google Scholar 

  2. Suau A, Bonnet R, Sutren M et al. (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65: 4799–807

    PubMed  CAS  Google Scholar 

  3. Macfarlane GT, Macfarlane S (1997) Human colonic microbiota: ecology physiology and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl 222: 3–9

    Google Scholar 

  4. Tannock GW (2002) Analysis of the intestinal microflora using molecular methods. Eur J Clin Nutr 56 Suppl 4: S44–9

    Article  PubMed  CAS  Google Scholar 

  5. Collignon AM, Butel MJ (2004) Établissement et composition de la flore microbienne intestinale. In: Flore microbienne intestinale: physiologie et pathologie digestives (Rambaud JC, Buts JP, Corthier G, Flourié B, eds) pp. 19–35, John Libbey Eurotext, Montrouge, France

    Google Scholar 

  6. Bond JH, Currier BE, Buchwald H, Levitt MD (1980) Colonic conservation of malabsorbed carbohydrate. Gastroenterology 78: 444–7

    PubMed  CAS  Google Scholar 

  7. Marteau P, Flourié B, Pochart P et al. (1990) Effect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. Br J Nutr 64: 71–9

    Article  PubMed  CAS  Google Scholar 

  8. Miller TL, Wolin MJ (1979) Fermentations by saccharolytic intestinal bacteria. Am J Clin Nutr 32: 164–72

    PubMed  CAS  Google Scholar 

  9. Pryde SE, Duncan SH, Hold GL et al. (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217: 133–9

    Article  PubMed  CAS  Google Scholar 

  10. Bourriaud C, Robins RJ, Martin L et al. (2005) Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J Appl Microbiol 99: 201–12

    Article  PubMed  CAS  Google Scholar 

  11. Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50: 23–40

    Article  PubMed  CAS  Google Scholar 

  12. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53: 749–90

    Article  PubMed  CAS  Google Scholar 

  13. Wrong O (1978) Nitrogen metabolism in the gut. Am J Clin Nutr 31: 1587–93

    PubMed  CAS  Google Scholar 

  14. Macdonald IA, Bokkenheuser VD, Winter J et al. (1983) Degradation of steroids in the human gut. J Lipid Res 24: 675–700

    PubMed  CAS  Google Scholar 

  15. Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6 Suppl 1: S43–5

    Article  PubMed  Google Scholar 

  16. Cummings JH, Pomare EW, Branch WJ et al. (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28: 1221–7

    Article  PubMed  CAS  Google Scholar 

  17. McNeil NI, Cummings JH, James WP (1978) Short chain fatty acid absorption by the human large intestine. Gut 19: 819–22

    Article  PubMed  CAS  Google Scholar 

  18. Cummings JH (1984) Colonic absorption: the importance of short chain fatty acids in man. Scand J Gastroenterol Suppl 93: 89–99

    Google Scholar 

  19. Roediger WE (1982) Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83: 424–9

    PubMed  CAS  Google Scholar 

  20. Roediger WE (1992) Oxidative and synthetic functions of n-Butyrate in colonocytes. Dis Colon Rectum 35: 511–2

    Article  PubMed  CAS  Google Scholar 

  21. Ryan GP, Dudrick SJ, Copeland EM, Johnson LR (1979) Effects of various diets on colonic growth in rats. Gastroenterology 77: 658–63

    PubMed  CAS  Google Scholar 

  22. Rolandelli RH, Buckmire MA, Bernstein KA (1997) Intravenous butyrate and healing of colonic anastomoses in the rat. Dis Colon Rectum 40: 67–70

    Article  PubMed  CAS  Google Scholar 

  23. Mortensen FV, Langkilde NC, Joergensen JC, Hessov I (1999) Short-chain fatty acids stimulate mucosal cell proliferation in the close human rectum after Hartmann’s procedure. Int J Colorectal Dis 14: 150–4

    Article  PubMed  CAS  Google Scholar 

  24. Scheppach W, Christl SU, Bartram HP et al. (1987) Effects of short-chain fatty acids on the inflamed colonic mucosa. Scand J Gastroenterol Suppl 222: 53–7

    Google Scholar 

  25. Barnard JA, Warwick G (1993) Butyrate rapidly induces growth inhibition and differentiation in HT-29 cells. Cell Growth Differ 4: 495–501

    PubMed  CAS  Google Scholar 

  26. Zgouras D, Wachtershauser A, Fringers D, Stein J (2003) Butyrate impairs intestinal tumor cell-induced angiogenesis by inhibiting HIF-1alpha nuclear translocation. Biochem Biophys Res Commun 300: 832–8

    Article  PubMed  CAS  Google Scholar 

  27. Avivi-Green C, Polak-Charcon S, Madar Z, Schwartz B (2002) Different molecular events account for butyrate-induced apoptosis in two human colon cancer cell lines. J Nutr 132: 1812–8

    PubMed  CAS  Google Scholar 

  28. Kvietys PR, Granger DN (1981) Effect of volatile fatty acids on blood flow and oxygen uptake by the dog colon. Gastroenterology 80: 962–9

    PubMed  CAS  Google Scholar 

  29. Mortensen FV, Nielsen H, Aalkjaer C et al. (1994) Short chain fatty acids relax isolated resistance arteries from the human ileum by a mechanism dependent on anion-exchange. Pharmacol Toxicol 75: 181–5

    Article  PubMed  CAS  Google Scholar 

  30. Bowling TE, Raimundo AH, Grimble GK, Silk DB (1993) Reversal by short-chain fatty acids of colonic fluid secretion induced by enteral feeding. Lancet 342: 1266–8

    Article  PubMed  CAS  Google Scholar 

  31. Frankenfield DC, Beyer PL (1991) Dietary fiber and bowel function in tube-fed patients. J Am Diet Assoc 91: 590–6, 9

    PubMed  CAS  Google Scholar 

  32. Sellin JH, De Soignie R (1998) Short-chain fatty acids have polarized effects on sodium transport and intracellular pH in rabbit proximal colon. Gastroenterology 114: 737–47

    Article  PubMed  CAS  Google Scholar 

  33. Musch MW, Bookstein C, Xie Y et al. (2001) SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Physiol Gastrointest Liver Physiol 280: G687–93

    PubMed  CAS  Google Scholar 

  34. Cherbut C (2003) Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 62: 95–9

    Article  PubMed  CAS  Google Scholar 

  35. Gaudier E, Jarry A, Blottiere HM et al. (2004) Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am J Physiol Gastrointest Liver Physiol 287: G1168–74

    Article  PubMed  CAS  Google Scholar 

  36. Levrat MA, Favier ML, Moundras C et al. (1994) Role of dietary propionic acid and bile acid excretion in the hypocholesterolemic effects of oligosaccharides in rats. J Nutr 124: 531–8

    PubMed  CAS  Google Scholar 

  37. Wolever TM, Fernandes J, Rao AV (1996) Serum acetate: propionate ratio is related to serum cholesterol in men but not women. J Nutr 126: 2790–7

    PubMed  CAS  Google Scholar 

  38. Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22: 763–79

    Article  PubMed  CAS  Google Scholar 

  39. McNeil NI, Bingham S, Cole TJ et al. (1982) Diet and health of people with an ileostomy. 2. Ileostomy function and nutritional state. Br J Nutr 47: 407–15

    Article  PubMed  CAS  Google Scholar 

  40. Jeppesen PB, Mortensen PB (1999) Colonic digestion and absorption of energy from carbohydrates and medium-chain fat in small bowel failure JPEN J Parenter Enteral, Nutr 23: S101–5

    Article  CAS  Google Scholar 

  41. Jeppesen PB, Mortensen PB (1998) Significance of a preserved colon for parenteral energy requirements in patients receiving home parenteral nutrition. Scand J Gastroenterol 33: 1175–9

    Article  PubMed  CAS  Google Scholar 

  42. Briet F, Fluorié B, Achour L et al. (1995) Bacterial adaptation in patients with short bowel and colon in continuity. Gastroenterology 109: 1446–53

    Article  PubMed  CAS  Google Scholar 

  43. Nordgaard I, Hansen BS, Mortensen PB (1994) Colon as a digestive organ in patients with short bowel. Lancet 343 373–6

    Article  PubMed  CAS  Google Scholar 

  44. Tappenden KA, Albin DM, Bartholome AL, Mangian HF (2003) Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. J Nutr 133: 3717–20

    PubMed  CAS  Google Scholar 

  45. Schneider SM, Girard-Pipau F, Anty R et al. (2006) Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short-chain fatty acids and microbiota. Clin Nutr 25: 82–90

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Schneider, S. (2007). Rôles nutritionnels de la flore intestinale. In: Traité de nutrition artificielle de l’adulte. Springer, Paris. https://doi.org/10.1007/978-2-287-33475-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33475-7_27

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33474-0

  • Online ISBN: 978-2-287-33475-7

Publish with us

Policies and ethics