Skip to main content

Imagerie de la néoangiogenèse

  • Chapter
  • 361 Accesses

Abstrait

Dans le cas des tumeurs, la croissance tumorale est dépendante de ľacquisition par les cellules tumorales ďun phénotype angiogénique particulier (1). Cette étape est nécessaire à la poursuite de la croissance tumorale via un apport en oxygène et en nutriments permettant aux cellules ďacquérir de nouvelles propriétés ďinvasion locatl et à distance. Ľhôte fournit ainsi à la tumeur le matériel nécessaire à la synthèse de néovaisseaux (cellules endothéliales, matrice extracellulaire, etc.) en réponse à des molécules pro-angio géniques synthétisées par la tumeur elle-même comme le basic fibroblast growth factor (bFGF), le vascular endothelial growth factor (VEGF) et le platelet derived growth factor (PDGF) (2). Ľactivité antitumorale des molécules antiangiogéniques repose sur ľhypothèse de cellules endothéliales génétiquement stables (donc à faible pouvoir de résistance) (3). Mais de récents travaux suggèrent que les cellules endothéliales composant les néovaisseaux tumoraux sont différentes des cellules endothéliales normales (4, 5).

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1: 27–31

    Article  PubMed  CAS  Google Scholar 

  2. Carmeliet P, Ferreira V, Breier G et al. (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 435–9

    Article  PubMed  CAS  Google Scholar 

  3. Kerbel RS (1997) A cancer therapy resistant to resistance. Nature 390: 335–6

    Article  PubMed  CAS  Google Scholar 

  4. McDonald DM, Foss AJ (2000) Endothelial cells of tumor vessels: Abnormal but not absent. Cancer Metastasis Rev 19: 109–20

    Article  PubMed  CAS  Google Scholar 

  5. St Croix B, Rago C, Velculescu V et al. (2000) Genes expressed in human tumor endothelium. Science 289: 1197–202

    Article  Google Scholar 

  6. Eberhard A, Kahlert S, Goede G et al. (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60: 1388–93

    PubMed  CAS  Google Scholar 

  7. Eatock MM, Schatzlein A, Kaye SB (2000) Tumour vasculature as a target for anticancer therapy. Cancer Treat Rev 26: 191–204

    Article  PubMed  CAS  Google Scholar 

  8. Yancopoulos GD, Davis S, Gale NW et al. (2000) Vascular-specific growth factors and blood vessel formation. Nature 407: 242–8

    Article  PubMed  CAS  Google Scholar 

  9. Wang HU, Chen ZF, Anderson DJ (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93: 741–53

    Article  PubMed  CAS  Google Scholar 

  10. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the aniogenic switch during tumorigenesis. Cell 86: 353–64

    Article  PubMed  CAS  Google Scholar 

  11. Folkman J (1997) Antiangiogenic therapy, in Devita VT, Hellman S, Rosenberg SA (eds). Principles and Practice of Oncology. Philadelphia, PA, Lippincott-Raven Publishers, 3075–85

    Google Scholar 

  12. Kandel J, Bossy-Wetzel E, Radvanyi F et al. (1991) Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66: 1095–104

    Article  PubMed  CAS  Google Scholar 

  13. Holash J, Maisonpierre PC, Compton D et al. (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994–8

    Article  PubMed  CAS  Google Scholar 

  14. Bikfalvi A, Bicknell Roy (2002) Recent advances in angiogenesis, antiangiogenesis and vascular targeting. Trends Pharmacol Sci 23:576–82

    Article  PubMed  CAS  Google Scholar 

  15. Gomez-Navarro J, Contreras JL, Arafat W et al. (2000) Geneticaly modified CD34+ cells as cellular vehicles for gene delivery into areas of angiogenesis in a rhesus model. Gene Ther 7: 43–52

    Article  PubMed  CAS  Google Scholar 

  16. Lyden D, Young AZ, Zagzag D et al. (1999) Id1 and Id3 are required for neurogenesis angiogenesis and vascularization of tumour xenografts. Nature 401: 670–7

    Article  PubMed  CAS  Google Scholar 

  17. Maniotis AJ, Folberg R, Hess A et al. (1999) Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol 155: 739–52

    PubMed  CAS  Google Scholar 

  18. Folberg R, Hendrix MJ, Maniotis AJ (2000) Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 156: 361–81

    PubMed  CAS  Google Scholar 

  19. Folkman J (2001) Can mosaic tumor vessels facilitate molecular diagnosis of cancer? Proc Natl Acad Sci USA 98: 398–400

    Article  PubMed  CAS  Google Scholar 

  20. Weidner N, Semple JP, Welch WR, Folkman J (1991) Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med 324: 1–8

    Article  PubMed  CAS  Google Scholar 

  21. Weidner N, Folkman J, Pozza F et al. (1992) Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84: 1875–87

    Article  PubMed  CAS  Google Scholar 

  22. Weidner N, Carroll PR, Flax J et al. (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143: 401–9.

    PubMed  CAS  Google Scholar 

  23. Yano T, Tanikawa S, Fujie T et al. (2000) Vascular endothelial growth factor expression and neovascularisation in non-small cell lung cancer. Eur J Cancer 36: 601–9

    Article  PubMed  CAS  Google Scholar 

  24. Tanaka F, Otake Y, Yanagihara K et al. (2001) Evaluation of angiogenesis in non-small cell lung cancer: comparison between antiCD34 antibody and antiCD105 antibody. Clin Cancer Res 7: 3410–5.

    PubMed  CAS  Google Scholar 

  25. De la Taille A, Katz AE, Bagiella E et al. (2000) Microvessel density as a predictor of PSA recurrence after radical prostatectomy. A comparison of CD34 and CD31. Am J Clin Pathol 113: 555–62

    Article  PubMed  Google Scholar 

  26. Ushijima C, Tsukamoto S, Yamazaki K et al. (2001) High vascularity in the peripheral region of non-small cell lung cancer tissue is associated with tumor progression. Lung Cancer 34: 233–41

    Article  PubMed  CAS  Google Scholar 

  27. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94: 883–93

    PubMed  Google Scholar 

  28. Eberhard A, Kahlert S, Goede V et al. (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60: 1388–93

    PubMed  CAS  Google Scholar 

  29. Angelsen BA (1982) Blood velocity measurements using the Doppler effect of backscattered ultrasound in: Doppler ultrasound in cardiology. Physical principles and clinical applications. Philiadelphia, Lea_& Febiger 32–70

    Google Scholar 

  30. Bessoud B, Lassau N, Koscielny S et al. (2003) High-frequency sonography and color Doppler in the management of pigmented skin lesions. Ulrasound Med Bio 29: 875–9

    Article  Google Scholar 

  31. Denis F, Bougnoux P, Prat M et al. (2002) In vivo quantitation of tumour vascularization assessed by doppler sonography in rat mammary tumours. Ultrasound Med Biol 28: 431–7

    Article  PubMed  Google Scholar 

  32. Denis F, Bougnoux P, Paon L et al. (2003) Radiosensitivity of rat mammary tumors correlates with early vessel changes assessed by power-doppler sonography. Journal of Ultrasound in Medicine 22: 921–9

    PubMed  Google Scholar 

  33. Denis F, Colas S, Chami L et al. (2003) Changes in Tumor Vascularization Following Irradiation, Anthracyclin or antiangiogenic Treatment in NMU-induced Rat Mammary Tumors. Clinical Cancer Res 9: 4546–52

    CAS  Google Scholar 

  34. Lassau N, Koscielny S, Avril MF et al. (2002) Prognostic value of angiogenesis evaluated with high-frequency and color Doppler sonography for preoperative assessment of melanomas. AJR Am J Roentgenol 178: 1547–51

    PubMed  Google Scholar 

  35. Yang WT, Tse GM, Lam PK et al. (2002) Correlation between color power Doppler sonographic measurement of breast tumor vasculature and immunohistochemical analysis of microvessel density for the quantitation of angiogenesis. J Ultrasound Med 21: 1227–35

    PubMed  CAS  Google Scholar 

  36. Forsberg F, Dicker AP, Thakur ML et al. (2002) Comparing contrast-enhanced ultrasound to immunohistochemical markers of angiogenesis in a human melanoma xenograft model: preliminary results. Ultrasound Med Biol 28: 445–51

    Article  PubMed  Google Scholar 

  37. Forsberg F, Ro RJ, Potoczek M et al. (2004) Assessment of angiogenesis: implications for ultrasound imaging. Ultrasonics 42: 325–30

    Article  PubMed  CAS  Google Scholar 

  38. Yankeelov TE, Niermann KJ, Huamani J et al. (2006) Correlation between estimates of tumor perfusion from microbubble contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging. J Ultrasound Med 25: 487–97

    PubMed  Google Scholar 

  39. Weber MA, Krakowski-Roosen H, Delorme S et al. (2006) Relationship of skeletal muscle perfusion measured by contrast-enhanced ultrasonography to histologic microvascular density. J Ultrasound Med 25: 583–91

    PubMed  Google Scholar 

  40. Lucidarme O, Nguyen T, Kono Y et al. (2004) Angiogenesis model for ultrasound contrast research: exploratory study. Acad Radiol 11: 4–12

    Article  PubMed  Google Scholar 

  41. Krix M, Kiessling F, Vosseler S et al. (2003) Comparison of intermittent-bolus contrast imaging with conventional power Doppler sonography: quantification of tumour perfusion in small animals. Ultrasound Med Biol 29: 1093–103

    Article  PubMed  Google Scholar 

  42. Pollard RE, Sadlowski AR, Bloch SH et al. (2002) Contrast-assisted destruction-replenishment ultrasound for the assessment of tumor microvasculature in a rat model. Technol Cancer Res Treat 1: 459–70

    PubMed  Google Scholar 

  43. Behm CZ, Lindner JR (2006) Cellular and Molecular Imaging With Targeted Contrast Ultrasound. Ultrasound Q 22: 67–72

    PubMed  Google Scholar 

  44. Klibanov AL (2006) Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 41: 354–62

    Article  PubMed  Google Scholar 

  45. Weller GE, Wong MK, Modzelewski RA et al. (2005) Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res 65: 533–9

    PubMed  CAS  Google Scholar 

  46. Cosgrove D (2003) Angiogenesis imaging-ultrasound. Br J Radiol 76: S43–9

    Article  PubMed  Google Scholar 

  47. Dayton PA, Pearson D, Clark J et al. (2004) Ultrasonic analysis of peptide-and antibody-targeted microbubble contrast agents for molecular imaging of alphavbeta3-expressing cells. Mol Imaging 3: 125–34

    Article  PubMed  CAS  Google Scholar 

  48. Ellegala DB, Leong-Poi H, Carpenter JE et al. (2003) Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 108: 336–41

    Article  PubMed  Google Scholar 

  49. Solesvik OV, Rofstad EK, Brustad T (1984) Vascular changes in a human malignant melanoma xenograft following single-dose irradiation. Radiat Res 98: 115–28

    Article  PubMed  CAS  Google Scholar 

  50. Donnely EF, Geng L, Wojcicki WE et al. (2001) Quantified power Doppler US of tumor blood flow correlates with microscopic quantification of tumor blood vessels. Radiology 219: 166–70

    Google Scholar 

  51. Koukourakis MI, Giatromanolaki A, Sivridis E et al. Squamous cell head and neck cancer: evidence of angiogenic regeneration during radiotherapy. Anticancer Res 21: 4301–9

    Google Scholar 

  52. Broillet A, Hantson J, Ruegg C et al. (2005) Assessment of microvascular perfusion changes in a rat breast tumor model using SonoVue to monitor the effects of different antiangiogenic therapies. Acad Radiol 12 Suppl 1: S28–33.

    Article  PubMed  Google Scholar 

  53. Emoto M, Ishiguro M, Iwasaki H et al. (2003) Effect of angiogenesis inhibitor TNP-470 on the growth, blood flow, and microvessel density in xenografts of human uterine carcinosarcoma in nude mice. Gynecol Oncol 89: 88–94

    Article  PubMed  CAS  Google Scholar 

  54. Niermann KJ, Fleischer AC, Donnelly EF et al. (2005) Sonographic depiction of changes of tumor vascularity in response to various therapies. Ultrasound Q 21: 61–7: 153–4

    PubMed  Google Scholar 

  55. Preda A, van Vliet M, Krestin GP et al. (2006) Magnetic resonance macromolecular agents for monitoring tumor microvessels and angiogenesis inhibition. Invest Radiol 41: 325–31

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag France

About this chapter

Cite this chapter

Denis, F., Bleuzen, A., Marret, H., Tranquart, F. (2007). Imagerie de la néoangiogenèse. In: Échographie de contraste. Springer, Paris. https://doi.org/10.1007/978-2-287-33297-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-2-287-33297-5_13

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-287-33294-4

  • Online ISBN: 978-2-287-33297-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics