Advertisement

Codes LDPC

Chapter
  • 287 Downloads
Part of the Collection IRIS book series (IRIS)

Abstrait

Les codes LDPC (Low Density Parity Check codes pour codes à faible densité) forment une classe de codes en bloc qui se caractérisent par une matrice de contrôle creuse. Ils ont été décrits pour la première fois dans la thèse de Gallager au début des années 60 [9.1]. Outre le décodage à entrée ferme des codes LDPC, cette thèse proposait déjà un décodage itératif basé sur la propagation de croyance (en anglais BP pour Belief Propagation). Ces travaux ont été oubliés pendant 30 ans. Seules quelques rares études y font référence durant cette période de sommeil, notamment, celle de Tanner qui proposa une généralisation des codes de Gallager et une représentation par graphe bipartite [9.2].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [9.1]
    R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA, MIT Press, 1963.Google Scholar
  2. [9.2]
    R. Tanner, « A recursive approach to low complexity codes », IEEE Trans. Inform. Theory, vol. 27, pp. 533–547, Septembre 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [9.3]
    D.J.C MacKay and R.M. Neal, « Good Codes Based on Very Sparse Matrices » 5 th IMA Conference on Cryprography and Coding, Berlin, Germany, Springer, 1995.Google Scholar
  4. [9.4]
    N. Wiberg, Codes and Decoding on General Graphs, Ph.D. diss., Linköping University, Sweden, 1996.Google Scholar
  5. [9.5]
    M. Sipser and D.A. Spielman, « Expander Codes », IEEE Trans. Inform. Theory, vol. 42, pp. 1710–1722, November 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [9.6]
    X.-Y. Hu, E. Eleftheriou, D.-M. Arnold and A. Dholakia, « Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC Codes », Proc. IEEE Global Telecommunications Conference, GLOBECOM’01, pp. 1036–1036, Nov. 2001.Google Scholar
  7. [9.7]
    F. Guilloud, Generic Architecture for LDPC codes decoding, Thèse de Doctorat ENST Paris, 2 juillet 2004.Google Scholar
  8. [9.8]
    T.J. Richardson and R.L Urbanke, « Efficient Encoding of Low-Density Parity-Check Codes », IEEE Trans. Inform. Theory, vol. 47, pp. 638–656, February 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9.9]
    T.R. Oenning and Jaekyun Moon, « A low-density generator matrix interpretation of parallel concatenated single bit parity codes », IEEE Trans. Magn., vol. 37, pp. 737–741, March 2001.CrossRefGoogle Scholar
  10. [9.10]
    D.J.C. Mackay, « Good Error-Correcting Codes Based on Very Sparse Matrices », IEEE Trans. Inform. Theory, vol. 45, pp. 399–431, March 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [9.11]
    J. Garcia-Frias and Wei Zhong, « Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix », IEEE Commun. Lett., vol. 7, pp. 266–268, June 2003.CrossRefGoogle Scholar
  12. [9.12]
    D.J.C MacKay, S.T. Wilson and M.C. Davey, « Comparison of Constructions of Irregular Gallager Codes » IEEE Trans. Commun., vol. 47, pp. 1449–1454, October 1999.CrossRefGoogle Scholar
  13. [9.13]
    J.W. Bond, S. Hui and H. Schmidt, « Constructing low-density parity-check codes », EUROCOMM 2000. Information Systems for Enhanced Public Safety and Security, IEEE AFCEA, May 2000.Google Scholar
  14. [9.14]
    X.Y. Hu, E. Eleftheriou and D.-M. Arnold, « Progressive edge-growth Tanner graphs », Proc. IEEE Global Telecommunications Conference, GLOBECOM’01, Nov. 2001.Google Scholar
  15. [9.15]
    D. Haley, A. Grant and J. Buetefuer, « Iterative encoding of low-density parity-check codes » Proc. IEEE Global Telecommunications Conference, GLOBECOM’02, Nov. 2002.Google Scholar
  16. [9.16]
    T. Okamura, « Designing LDPC codes using cyclic shifts », Proc. IEEE Int. Symp. Inform. Theory, July 2003.Google Scholar
  17. [9.17]
    Y. Kou, S. Lin and M.P.C. Fossorier, « Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Results », Trans. Inform. Theory, vol. 47, pp. 2711–2736, November 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [9.18]
    B. Ammar, B. Honary, Y. Kou, and S. Lin, « Construction of low density parity check codes: a combinatoric design approach » Proc. IEEE Int. Symp. Inform. Theory, July 2002.Google Scholar
  19. [9.19]
    B. Vasic, « Combinatorial constructions of low-density parity check codes for iterative decoding », Proc. IEEE Int. Symp. Inform. Theory, July 2002.Google Scholar
  20. [9.20]
    R. J. McEliece, D. J. C. MacKay and J.-F. Cheng, « Turbo Decoding as an Instance of Pearl’s Belief Propagation Algorithm », IEEE J. Select. Areas Commun., Vol. 16, pp. 140–152, February 1998.CrossRefGoogle Scholar
  21. [9.21]
    I.B. Djordjevic, S. Sankaranarayanan and B.V. Vasic, « Projective-Plane Iteratively Decodable Block Codes for WDM High-Speed Long-Haul Transmission Systems », J. Lightwave Technol., Vol. 22, March 2004.Google Scholar
  22. [9.22]
    F.R. Kschischang and B.J. Frey, « Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models », IEEE J. Select. Areas Commun., Vol. 16, pp. 219–230, 1998.CrossRefGoogle Scholar
  23. [9.23]
    Y. Mao and A.H. Banihashemi, « Decoding Low-Density Parity-Check Codes With Probabilistic Scheduling », IEEE Commun. Lett., Vol. 5, pp. 414–416, October 2001.CrossRefGoogle Scholar
  24. [9.24]
    T.J. Richardson, M.A. Shokrollahi and R.L. Urbanke, « Design of Capacity-Approaching Irregular Low-Density Parity-Check Codes », IEEE Trans. Inform. Theory, Vol. 47, pp. 619–637, February 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  25. [9.25]
    S.-Y. Chung, T.J. Richardson, and R.L. Urbanke, « Analysis of Sum-Product Decoding of Low-Density Parity-Check Codes Using a Gaussian Approximation », IEEE Trans. Inform. Theory, vol. 47, February 2001.Google Scholar
  26. [9.26]
    S.-Y. Chung, On the construction of some capacity-approaching coding schemes, Ph. D. Dissertation, MIT, Cambridge, MA, 2000.Google Scholar
  27. [9.27]
    S. Ten Brink, « Convergence of iterative decoding », IEE Electronics Lett., Vol. 35, pp. 806–808, May 1999.CrossRefGoogle Scholar
  28. [9.28]
    S. Ten Brink, « Iterative decoding trajectories of parallel concatenated codes », Proc. 3 rd IEEE ITG Conference on Source and Channel Coding, pp. 75–80, Munich, Jan. 2000.Google Scholar
  29. [9.29]
    M. Ardakani and F.R. Kschischang, « Designing irregular LPDC codes using EXIT charts based on message error rate », Proc. Int. Symp. Inform. Theory., July 2002.Google Scholar
  30. [9.30]
    M. Ardakani, T.H. Chan, and F.R. Kschischang, « Properties of the EXIT Chart for One-Dimensional LDPC Decoding Schemes », Proc. Canadian Workshop Inform. Theory, May 2003.Google Scholar
  31. [9.31]
    D. Declercq, Optimisation et performances des codes LDPC pour des canaux non standards, Thèse d’habilitation à diriger des recherches, université de Cergy Pontoise, décembre 2003.Google Scholar
  32. [9.32]
    J. Campello and D.S. Modha, « Extended Bit-Filling and LDPC Code Design », Proc. IEEE Global Telecommunications Conference, GLOBECOM’01, pp. 985–989, Nov. 2001.Google Scholar
  33. [9.33]
    X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, « Progressive edge-growth Tanner graphs », Proc. IEEE Global Telecommunications Conference, GLOBECOM’01, Nov. 2001.Google Scholar
  34. [9.34]
    H. Zhang and J.M.F. Moura, « The design of structured regular LDPC codes with large girth », Proc. IEEE Global Telecommunications Conference, GLOBECOM’03, Dec. 2003.Google Scholar
  35. [9.35]
    T. Tian, C. Jones, J.D. Villasenor, and R.D. Wesel, « Construction of irregular LDPC codes with low error floors », Proc. IEEE Int. Conf. Communications, ICC’03, 2003.Google Scholar
  36. [9.36]
    C. Berrou and S. Vaton, « Computing the minimum distance of linear codes by the error impulse method », Proc. IEEE Int. Symp. Inform. Theory, July 2002.Google Scholar
  37. [9.37]
    C. Berrou, S. Vaton, M. Jézéquel, and C. Douillard, « Computing the minimum distance of linear codes by the error impulse method », Proc. IEEE Global Telecommunications Conference, GLOBECOM’02, Taiwan, Nov. 2002.Google Scholar
  38. [9.38]
    X.-Y. Hu, M.P.C. Fossorier and E. Eleftheriou, « On the Computation of the Minimum Distance of Low-Density Parity-Check Codes », Proc. IEEE Int. Conf. Communications, ICC’04, 2004.Google Scholar
  39. [9.39]
    R. Koetter and P.O. Vontobel, « Graph-covers and the iterative decoding of finite length codes », Proc. 3 rd Int. Symp. Turbocodes and Related Topics, sept. 2003Google Scholar
  40. [9.40]
    E. Boutillon, J. Castura, and F.R. Kschischang, « Decoder-First Code Design », Proc. 2 nd Int. Symp. Turbocodes and Related Topics, Brest, France, pp. 459–462, 2000.Google Scholar
  41. [9.41]
    Y. Chen and D. Hocevar, « A FPGA and ASIC Implementation of Rate 1/2, 8088-b Irregular Low Density Parity Check Decoder », Proc. IEEE Global Telecommunications Conference, GLOBECOM’03, 1–5 Dec. 2003.Google Scholar
  42. [9.42]
    F. Guilloud, E. Boutillon and J.-L. Danger, « lambda-min Decoding Algorithm of Regular and Irregular LDPC Codes », Proc. 3 rd Int. Symp. Turbocodes and Related Topics, 1–5 Sept. 2003.Google Scholar
  43. [9.43]
    M.M. Mansour and N.R. Shanbhag, « Turbo decoder architectures for low-density parity-check codes », Proc IEEE Global Telecommunications Conference, GLOBECOM’02, 17–21 Nov. 2002.Google Scholar
  44. [9.44]
    M.P.C. Fossorier, M. Mihaljevic, and I. Imai, « Reduced Complexity Iterative Decoding of Low-Density Parity-Check Codes Based on Belief Propagation », IEEE Trans. on Commun., Vol. 47, pp. 673–680, May 1999.CrossRefGoogle Scholar
  45. [9.45]
    E. Yeo, B. Nikolic, and V. Anantharam, « High Throughput Low-Density Parity-Check Decoder Architectures », Proc. IEEE Global Conference on Telecommunications, GLOBECOM’01, San Antonio, 25–29 Nov. 2001.Google Scholar
  46. [9.46]
    J. Chen and M. Fossorier, « Near optimum universal belief propagation based decoding of low-density parity check codes » IEEE Trans. Commun., vol. 50, pp. 406–414, Mar. 2002.CrossRefGoogle Scholar
  47. [9.47]
    X.-Y. Hu and R. Mittelholzer, « An ordered-statistics-based Approximation of the sum-product algorithm », Proc. IEEE Int. Telecommunications Symp., ITS2002, Natal, Brazil, September 8–12, 2002.Google Scholar
  48. [9.48]
    X.-Y. Hu and R. Mittelholzer, « A Sorting-based approximation of the sum-product algorithm », Journal of the Brazilian Telecommunications Society, Vol. 18,No. 1, June 2003, pp. 54–60.Google Scholar
  49. [9.49]
    D.J.C. Mackay, LDPC database, Available at http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.
  50. [9.50]
    R. Urbanke, programme LdpcOpt, Available at http://lthcwww.epfl.ch/research/ldpcopt/.
  51. [9.51]
    C. Jones, E. Vallés, M. Smith and J. Villasenor, « Approximate min* constraint node updating for LDPC code decoding », Proc. IEEE Military Communications Conference, MILCOM’03, 13–16 Oct. 2003.Google Scholar
  52. [9.52]
    J. Chen and M.P.C. Fossorier, « Density Evolution for Two Improved BP-Based Decoding Algorithms of LDPC Codes », IEEE Commun. Lett., Vol. 6, pp. 208–210, May 2002.CrossRefGoogle Scholar
  53. [9.53]
    B. Levine, R.R. Taylor and H. Schmit, « Implementation of near Shannon limit error-correcting codes using reconfigurable hardware », Proc. IEEE Symp. Field-Programmable Custom Computing Machines, pp. 217–226, 2000.Google Scholar
  54. [9.54]
    T. Bhatt, K. Narayanan, and N. Kehtarnavaz, « Fixed-point DSP Implementation of Low-Density Parity Check Codes », Proc. 9 th DSP Workshop, DSP 2000, Oct. 2000.Google Scholar
  55. [9.55]
    A.J. Blanksby and C.J. Howland, « A 690-mW 1-Gb/s 1024-b, Rate-1/2 Low-Density Parity-Check Code Decoder », IEEE J. Solid-State Circuits, Vol. 37, pp. 404–412, March 2002.CrossRefGoogle Scholar
  56. [9.56]
    T. Zhang and K. K. Parhi, « A 54 Mbps (3,6)-regular FPGA LDPC Decoder », Proc. IEEE Workshop on Signal Processing Systems, SIPS’02, 2002.Google Scholar
  57. [9.57]
    M.M. Mansour and N. R. Shanbhag, « A Novel Design Methodology for High-Performance Programmable Decoder Cores for AA-LDPC Codes », Proc. IEEE Workshop on Signal Processing Systems Systems, SIPS’03, Seoul, Korea, pp. 29–34, Aug. 2003.Google Scholar
  58. [9.58]
    M.M. Mansour and N.R. Shanbhag, « High-throughput LDPC decoders », IEEE Trans. VLSI Syst., Vol. 11,no. 6, pp. 976–996, Dec. 2003.CrossRefGoogle Scholar
  59. [9.59]
    P. Urard, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E. Yeo and B. Gupta, « A 135Mbps DVB-S2 compliant codec based on 64800-bit LDPC and BCH codes », (ISSCC paper 24.3) DAC 2005, pp. 547–548, 2005.Google Scholar
  60. [9.60]
    F. Kienle, T. Brack and N. Wehn, « A Synthesizable IP Core for DVBS2 LDPC Code Decoding », Proc. Design, Automation and Test in Europe, DATE’05, Vol. 3, pp. 100–105, 2005.Google Scholar

Copyright information

© Springer-Verlag France 2007

Personalised recommendations