Advertisement

Turbocodes produits

Chapter
  • 273 Downloads
Part of the Collection IRIS book series (IRIS)

Abstrait

En vertu de la borne de Gilbert-Varshamov, il est nécessaire d’avoir des codes longs pour obtenir des codes en blocs ayant une distance minimale de Hamming (DMH)importante et donc un fort pouvoir de correction. Or, sans structure particulière, il est presque impossible de décoder ces codes.

Bibliographie

  1. [8.1]
    P. Elias, « Error-free coding », IEEE Transactions on Information Theory, vol. IT-4, 1954, pp. 29–37.CrossRefMathSciNetGoogle Scholar
  2. [8.2]
    S.M. Reddy and J.P. Robinson, « Random error and burst corrections by iterated codes », IEEE Transactions on Information Theory, vol. 18,No 1, 1972, pp. 182–185.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [8.3]
    N. Sendrier, Codes correcteurs à haut pouvoir de correction, Thèse de l’Université Paris VI, 1991.Google Scholar
  4. [8.4]
    C. Berrou, A. Glavieux and P. Thitimajshima, « Near Shannon limit error correcting coding and decoding: Turbo-codes », Intl. Conf. on Communications, vol. 2, 1993, Geneva, Switzerland, pp. 1064–1070.Google Scholar
  5. [8.5]
    R. Pyndiah, A. Glavieux, A. Picart and S. Jacq, « Near optimum decoding of product codes », IEEE GLOBECOM’94, San Francisco, 1994.Google Scholar
  6. [8.6]
    C.R.P. Hartmann and L.D. Rudolph, « An optimum symbol-by-symbol decoding rule for linear codes », IEEE Transactions on Information Theory, vol. T-22, 1974, pp. 514–517.MathSciNetGoogle Scholar
  7. [8.7]
    J. Hagenauer, E. Offer and L. Papke, « Iterative decoding of binary block and convolutional codes », IEEE Transactions on Information Theory, vol. IT-42, 1996, pp. 429–445.CrossRefGoogle Scholar
  8. [8.8]
    L.E. Nazarov and V.M. Smolyaninov, « Use of fast Walsh-Hadamard transformation for optimal symbol-by-symbol binary block-code decoding », Electronics Letters, vol. 34, 1998, pp. 261–262.CrossRefGoogle Scholar
  9. [8.9]
    M. Lee and M. Kaveh, « Fast Hadamard transform based on a simple matrix factorization », IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 34, 1986, pp. 1666–1667.CrossRefGoogle Scholar
  10. [8.10]
    A. Goalic, K. Cavalec-Amis and V. Kerbaol, « Real-Time Turbo Decoding of Block Turbo Codes using the Hartmann-Nazarov algorithm on the DSP TEXAS TMS320C6201 », Intl. Conf. on Communications, New-York, 2002.Google Scholar
  11. [8.11]
    K. Farrell, L. Rudolph, C. Hartmann and L. Nielsen, « Decoding by local optimisation », IEEE Trans. Info. Theory, vol. 29,N° 5, pp 740–743, Sept. 1983.zbMATHCrossRefGoogle Scholar
  12. [8.12]
    V. Sorokine, F.R. Kschischang and V. Durand, « Trellis based decoding of binary linear block codes », Lecture Notes in Computer Science, vol. 793, Springer-Verlag Publisher, 1994, pp. 270–286.MathSciNetGoogle Scholar
  13. [8.13]
    J. Wolf, « Efficient maximum likelihood decoding of linear block codes using a trellis », IEEE Transactions on Information Theory, vol. 24, 1978, pp. 76–80.zbMATHCrossRefGoogle Scholar
  14. [8.14]
    R. Kotter and A. Vardy, « Algebraic soft-decision decoding of Reed-Solomon codes », IEEE International Symposium on Information Theory, 2000, p. 61.Google Scholar
  15. [8.15]
    M. Sudan, « Decoding of Reed-Solomon codes beyond the error correction bound » Journal of Complexity, vol. 12, 1997, pp. 180–193.CrossRefMathSciNetGoogle Scholar
  16. [8.16]
    C.Y. Liu and S. Lin, « Turbo encoding and decoding of Reed-Solomon codes through binary decomposition and self-concatenation », IEEE Transactions on Communications, vol. 52,issue 9, Sept. 2004, pp. 1484–1493.CrossRefGoogle Scholar
  17. [8.17]
    A. Kothiyal, O.Y. Takeshita, « A comparison of adaptative belief propagation and the best graph algorithm for the decoding of linear block codes », IEEE International Symposium on Information Theory, 2005, pp. 724–728.Google Scholar
  18. [8.18]
    P. Adde, R. Pyndiah and O. Raoul, « Performance and complexity of block turbo decoder circuits », Third International Conference on Electronics, Circuits and System ICECS’96, Rodos, Greece, 1996, pp. 172–175.Google Scholar
  19. [8.19]
    J. Cuevas, P. Adde and S. Kerouedan, « Turbo decoding of product codes for Gigabit per second applications and beyond », European Tansactions on Telecommunications, vol.17,N° 1, Jan. 2006, pp. 45–55.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2007

Personalised recommendations