Skip to main content

Advances in the Understanding and Prediction of Cyclone Development with Limited-Area Fine-Mesh Models

  • Chapter
Extratropical Cyclones

Abstract

Since the early scientific theories of the development of extratropical cyclones in the 19th century (Kutzbach 1979), meteorologists have sought a complete and quantitative description of the physics of these atmospheric systems that dominate weather in middle latitudes. The earliest studies were descriptive and based almost entirely on surface observations. With the advent of instrumented aircraft in the early 1930s, operational rawinsondes in the 1940s and satellites in the 1960s, a more complete threedimensional picture of the structure of extratropical cyclones emerged, as described by others in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270–286.

    Article  Google Scholar 

  • ——, 1982: Tropical Cyclones—Their Evolution, Structure and Effects. Meteor. Monogr. No. 41. American Meteorological Society, 208 pp.

    Google Scholar 

  • ——, 1983a: Modeling sea-air energy fluxes and their effects on explosive marine cyclogenesis. Papers in Meteor. Res., 6, 1–12.

    Google Scholar 

  • ——, 1983b: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111, 1306–1335.

    Article  Google Scholar 

  • ——, 1986: The general question of predictability. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed. American Meteorological Society, 636–656.

    Google Scholar 

  • ——, and D. Keyser, 1979: Tests of a fine-mesh model over Europe and the United States. Mon. Wea. Rev., 107, 963–984.

    Article  Google Scholar 

  • ——, Y.-H. Kuo, S. G. Benjamin and Y.-F. Li, 1982: The evolution of the mesoscale environment of severe local storms: Preliminary modeling results. Mon. Wea. Rev., 110, 1187–1213.

    Article  Google Scholar 

  • ——, ——, and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111, 1174–1188.

    Article  Google Scholar 

  • ——, ——, D. P. Baumhefner, R. M. Errico and T. W. Bettge, 1985: Predictability of mesoscale atmospheric motions. Contribution to “Issues in Atmospheric and Oceanic Modeling,” Advances in Geophysics, 28B, 159–202.

    Article  Google Scholar 

  • ——, E.-Y. Hsie and Y.-H. Kuo, 1987: Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Technical Note, NCAR/TN-282 + STR, 66 pp.

    Google Scholar 

  • ——, Y.-H. Kuo, E.-Y. Hsie, S. Low-Nam and T. W. Bettge, 1989: Estimation of skill and uncertainty in regional numerical models. Quart. J. Roy. Meteor. Soc., 115A, 763–806.

    Article  Google Scholar 

  • Arnold, C. P., and C. H. Dey, 1986: Observing-systems simulation experiments: Past, present, and future. Bull. Amer. Meteor. Soc., 67, 687–695.

    Article  Google Scholar 

  • Atlas, R., 1987: The role of oceanic fluxes and initial data on the numerical prediction of an intense coastal storm. Dyn. Atmos. Oceans., 10, 359–388.

    Article  Google Scholar 

  • Benjamin, S. G., and T. N. Carlson, 1986: Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations. Mon. Wea. Rev., 114, 307–329.

    Article  Google Scholar 

  • Bjerknes, J., and J. Holmboe, 1944: On the theory of cyclones. J. Meteor., 1, 1–22.

    Article  Google Scholar 

  • Bleck, R., 1977: Numerical simulation of lee cyclogenesis in the Gulf of Genoa. Mon. Wea. Rev., 105, 428–445.

    Article  Google Scholar 

  • Brill, K. F., L. W. Uccellini, R. P. Burkhart, T. T. Warner and R. A. Anthes, 1985: Numerical simulations of a transverse indirect circulation and low-level jet in the exit region of an upperlevel jet. J. Atmos. Sci., 42, 1306–1320.

    Article  Google Scholar 

  • Buzzi, A., and S. Tibaldi, 1978: Cyclogenesis in the lee of the Alps: A case study. Quart. J. Roy. Meteor. Soc., 104, 271–287.

    Article  Google Scholar 

  • ——, T. Nanni and M. Tagliazucca, 1977: Midtropospheric frontal zones: Numerical experiments with an isentropic coordinate primitive equation model. Arch. Meteor. Geophys. Bioklim., A26, 155–178.

    Article  Google Scholar 

  • Chang, C. B., D. J. Perkey and C. W. Kreitzberg, 1982: A numerical case study of the effects of latent heating on a developing wave cyclone. J. Atmos. Sci., 39, 1555–1570.

    Article  Google Scholar 

  • ——, —— and ——, 1984: Latent heat induced energy transformations during cyclogenesis. Mon. Wea. Rev., 112, 357–367.

    Article  Google Scholar 

  • ——, —— and ——, 1986: Impact of missing wind observations on the simulation of a severe storm environment. Mon. Wea. Rev., 114, 1278–1287.

    Article  Google Scholar 

  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135–162.

    Article  Google Scholar 

  • ——, R. Fjertoft and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254.

    Article  Google Scholar 

  • Chen, S.-J., and L. Dell’Osso, 1987: A numerical case study of East Asian cyclogenesis. Mon. Wea. Rev., 115, 477–487.

    Article  Google Scholar 

  • Chen, T.-C., C.-B. Chang and D. J. Perkey, 1983: Numerical study of an AMTEX ‘75 oceanic cyclone. Mon. Wea. Rev., 111, 1818–1829.

    Article  Google Scholar 

  • Cram, J. M., and M. L. Kaplan, 1985: Variational assimilation of VAS data into a mesoscale model: Assimilation method and sensitivity experiments. Mon. Wea. Rev., 113, 467–484.

    Article  Google Scholar 

  • Dare, P. M., and P. J. Smith, 1984: A comparison of observed and model energy balance for an extratropical cyclone system. Mon. Wea. Rev., 112, 1289–1308.

    Article  Google Scholar 

  • Davis, W. R., 1954: Hurricanes of 1954. Mon. Wea. Rev., 82, 370–373.

    Article  Google Scholar 

  • Douglas, S. G., and T. T. Warner, 1987: Utilization of VAS satellite data in the initialization of an oceanic cyclogenesis simulation. Mon. Wea. Rev., 115, 2996–3012.

    Article  Google Scholar 

  • Duffy, D. G., and R. Atlas, 1986: The impact of SeasatA scatterometer data on the numerical prediction of the Queen Elizabeth H Storm. J. Geophys. Res., 91, 2241–2248.

    Article  Google Scholar 

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, No. 3, 33–52.

    Article  Google Scholar 

  • Egger, J., 1972: Numerical experiments on the cyclogenesis in the Gulf of Genoa. Beitr. Phys. Atmos., 45, 320–346.

    Google Scholar 

  • Eliassen, A., and E. Raustein, 1968: A numerical integration experiment with a model atmosphere based on isentropic coordinates. Meteor. Ann., 5, 45–63.

    Google Scholar 

  • Emanuel, K., 1983: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 2016–2033.

    Article  Google Scholar 

  • Fiorino, M., and T. T. Warner, 1981: Incorporating surface winds and rainfall rates into the initialization of a mesoscale hurricane model. Mon. Wea. Rev., 109, 1915–1928.

    Article  Google Scholar 

  • Fritsch, J. M., and R. A. Maddox, 1981: Convectively driven mesoscale weather systems aloft. Part II: Numerical simulations. J. Appl. Meteor., 20, 20–26.

    Article  Google Scholar 

  • Gal-Chen, T., B. D. Schmidt and L. W. Uccellini, 1986: Simulation experiments for testing the assimilation of geostationary satellite temperature retrieval into a numerical prediction model. Mon. Wea. Rev., 114, 1213–1230.

    Article  Google Scholar 

  • Gyakum, J. R., 1983: On the evolution of the Queen Elizabeth H Storm. I. Synoptic aspects. Mon. Wea. Rev., 111, 1137–1155.

    Article  Google Scholar 

  • Hack, J. J., 1989: On the promise of general-purpose parallel computing. Parallel Computing, 10, 261–275.

    Article  Google Scholar 

  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. Wiley, 477 pp.

    Google Scholar 

  • Haurwitz, B., 1951: The perturbation equations in meteorology. Compendium of Meteorology, T. F. Malone, Ed. American Meteorological Society, 401–420.

    Google Scholar 

  • Hobgood, J. S., 1986: A possible mechanism for the diurnal oscillation of tropical cyclones. J. Atmos. Sci., 43, 2901–2922.

    Article  Google Scholar 

  • Hughes, L. A., F Baer, G. E. Birchfield and R. E. Kaylor, 1955: Hurricane Hazel and a long-wave outlook. Bull. Amer. Meteor. Soc., 36, 528–533.

    Article  Google Scholar 

  • Källén, E., and X.-Y. Huang, 1988a: The influence of isolated observations on short-range numerical weather forecasts. Tellus, 40A, 324–336.

    Article  Google Scholar 

  • ——, and ——, 1988b: Perturbation sensitivity on the cyclone scale in the ECMWF model. Preprints, Palmén Memorial Symposium on Extratropical Cyclones, Helsinki. Amer. Meteor. Soc., 314–317.

    Google Scholar 

  • Kasahara, A., 1959: A comparison between geostrophic and nongeostrophic numerical forecasts of hurricane movement with the barotropic steering model. J. Meteor., 16, 371–384.

    Article  Google Scholar 

  • ——, 1961: A numerical experiment on the development of a tropical cyclone. J. Meteor., 18, 259–282.

    Article  Google Scholar 

  • Keyser, D., and L. W. Uccellini, 1987: Regional models: Emerging research tools for synoptic meteorologists. Bull. Amer. Meteor. Soc., 68, 306–320.

    Article  Google Scholar 

  • Knox, J. L., 1955: The storm “Hazel”: Synoptic résumé of its development as it approached southern Ontario. Bull. Amer. Meteor. Soc., 36, 239–246.

    Article  Google Scholar 

  • Krueger, A. F., 1954: The weather and circulation of October 1954. Mon. Wea. Rev., 82, 296–300.

    Article  Google Scholar 

  • Kuo, Y.-H., and R. A. Anthes, 1984: Accuracy of diagnostic heat and moisture budgets using SESAME-79 field data as revealed by observing system simulation experiments. Mon. Wea. Rev., 112, 1465–1481.

    Article  Google Scholar 

  • ——, and ——, 1985: Calculation of geopotential and temperature fields from an array of nearly continuous wind observations. J. Atmos. Oceanic Technol., 2, 22–34.

    Article  Google Scholar 

  • ——, M. Skumanich, P. L. Haagenson and J. S. Chang, 1985: The accuracy of trajectory models as revealed by the observing system simulation experiments. Mon. Wea. Rev., 113, 1852–1867.

    Article  Google Scholar 

  • ——, E. G. Donall and M. A. Shapiro, 1987: Feasibility of shortrange numerical weather prediction using observations from a network of profilers. Mon. Wea. Rev., 115, 2402–2427.

    Article  Google Scholar 

  • ——, and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone in the eastern Pacific. Mon. Wea. Rev., 116, 2081–2105.

    Article  Google Scholar 

  • Kutzbach, G., 1979: The Thermal Theory of Cyclones. American Meteorological Society, 255 pp.

    Google Scholar 

  • Lanicci, J. M., T. N. Carlson and T. T. Warner, 1987: Sensitivity of the Great Plains severe-storm environment to soil-moisture distribution. Mon. Wea. Rev., 115, 2660–2673.

    Article  Google Scholar 

  • Lee, D. K., and D. D. Houghton, 1984: Impact of mesoscale satellite wind data on numerical model simulation: A case study. Mon. Wea. Rev., 112, 1005–1016.

    Article  Google Scholar 

  • Maddox, R. A., D. J. Perkey and J. M. Fritsch, 1981: Evolution of upper tropospheric features during the development of a mesoscale convective complex. J. Atmos. Sci., 38, 1664–1674.

    Article  Google Scholar 

  • McCallum, E., J. R. Grant and B. W. Golding, 1983: A synoptic case study using a numerical model. Meteor. Mag., 112, 275–288.

    Google Scholar 

  • McCumber, M. C., and R. A. Pielke, 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model. 1. Soil layer. J. Geophys. Res., 86, 9929–9938.

    Article  Google Scholar 

  • Mesinger, F., and R. F Strickler, 1982: Effect of mountains on Genoa cyclogenesis. J. Meteor. Soc. Japan, 60, 326–338.

    Article  Google Scholar 

  • Mook, C. P., 1955: The distribution of peak wind gusts in Hurricane Hazel 1954. Weatherwise, 8, 92–96.

    Article  Google Scholar 

  • Newton, C. W., and A. Trevisan, 1984: Clinogenesis and frontogenesis in jet-stream waves. Part II: Channel model numerical experiments. J. Atmos. Sci., 41, 2735–2755.

    Article  Google Scholar 

  • Nuss, W. A., and R. A. Anthes, 1987: A numerical investigation of low-level processes in rapid cyclogenesis. Mon. Wea. Rev., 115, 2728–2743.

    Article  Google Scholar 

  • Orlanski, I., and B. B. Ross, 1984: The evolution of an observed cold front. Part II. Mesoscale dynamics. J. Atmos. Sci., 41, 1669–1703.

    Article  Google Scholar 

  • ——, and J. J. Katzfey, 1987: Sensitivity of model simulations for a coastal cyclone. Mon. Wea. Rev., 115, 2792–2821.

    Article  Google Scholar 

  • Paegle, J., and T. Vukicevic, 1987: The predictability of low-level flow during ALPEX. Meteor. Atmos. Phys., 36, 45–60.

    Article  Google Scholar 

  • Palmén, E., 1948a: On the distribution of temperature and winds in the upper westerlies. J. Meteor., 5, 20–27.

    Article  Google Scholar 

  • ——, 1948b. On the formation and structure of tropical hurricanes. Geophysica, 3, 26–38.

    Google Scholar 

  • ——, 1958: Vertical circulation and release of kinetic energy during the development of Hurricane Hazel into an extratropical storm. Tellus, 10, 1–23.

    Article  Google Scholar 

  • Palmén, E., 1959: On the maintenance of kinetic energy in the atmosphere. The Atmosphere and the Sea in Motion (Rossby Memorial Volume), B. Bolin, Ed. Rockefeller Institute Press, 212–224.

    Google Scholar 

  • ——, 1961: On conversion between potential and kinetic energy in the atmosphere. Geofis. Pura e Appl., 49, 167–177.

    Article  Google Scholar 

  • ——, and C. W. Newton, 1948: A study of the mean wind and temperature distribution in the vicinity of the polar front in winter. J. Meteor., 5, 220–226.

    Article  Google Scholar 

  • ——, and ——, 1951: On the three-dimensional motions in an outbreak of polar air. J. Meteor., 8, 25–39.

    Article  Google Scholar 

  • ——, and C. L. Jordan, 1955: Note on the release of kinetic energy in tropical cyclones. Tellus, 7, 186–188.

    Article  Google Scholar 

  • ——, and E. O. Holopainen, 1962: Divergence, vertical velocity and conversion between potential and kinetic energy in an extratropical disturbance. Geophysica, 8, 89–113.

    Google Scholar 

  • ——, and C. W. Newton, 1969: Atmospheric Circulation Systems. Academic Press, 603 pp.

    Google Scholar 

  • Pielke, R. A., 1984: Mesoscale Numerical Modeling. Academic Press, 612 pp.

    Google Scholar 

  • Robertson, F. R., and P. J. Smith, 1983: The impact of model moist processes on the energetics of extratropical cyclones. Mon. Wea. Rev., 111, 723–744.

    Article  Google Scholar 

  • Ross, B. B., and I. Orlanski, 1982: The evolution of an observed cold front. Part I: Numerical simulation. J. Atmos. Sci., 39, 296–327.

    Article  Google Scholar 

  • Rossby, C.-G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66 (Supp.), 68–87.

    Google Scholar 

  • Sanders, F., 1971: Analytic solutions of the nonlinear omega and vorticity equations for a structurally simple model of disturbances in the baroclinic westerlies. Mon. Wea. Rev., 99, 393–407.

    Article  Google Scholar 

  • Shapiro, M. A., 1975: Simulation of upper-level frontogenesis with a 20-level isentropic coordinate primitive equation model. Mon. Wea. Rev., 103, 591–604.

    Article  Google Scholar 

  • Simmons, A. J., and B. J. Hoskins, 1978: The life cycles of some nonlinear baroclinic waves. J. Atmos. Sci., 35, 414–432.

    Article  Google Scholar 

  • Smagorinsky, J., S. Manabe and J. L. Holloway, Jr., 1965: Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev., 93, 727–768.

    Article  Google Scholar 

  • Sundqvist, H., E. Berge and J. E. Kristjansson, 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 1641–1657.

    Article  Google Scholar 

  • Sutcliffe, R. C., and A. G. Forsdyke, 1950: The theory and use of upper air thickness patterns in forecasting. Quart. J. Roy. Meteor. Soc., 76, 189–217.

    Article  Google Scholar 

  • Syöno, S., 1962: A numerical experiment on the formation of tropical cyclones. Proc. Intl. Symp. on Num. Wea. Pred. Meteorological Society of Japan, 405–418.

    Google Scholar 

  • Teweles, S., and H. Wobus, 1954: Verification of prognostic charts. Bull. Amer. Meteor. Soc., 35, 455–463.

    Article  Google Scholar 

  • Thompson, P. D., 1983: A history of numerical weather prediction in the United States. Bull. Amer. Meteor. Soc., 64, 755–769.

    Google Scholar 

  • Tibaldi, S., A. Buzzi and P. Malguzzi, 1980: Orographically induced cyclogenesis: Analysis of numerical experiments. Mon. Wea. Rev., 108, 1302–1314.

    Article  Google Scholar 

  • Trevisan, A., 1976: Numerical experiments on the influence of orography on cyclone formation with an isentropic primitive equation model. J. Atmos. Sci., 33, 768–780.

    Article  Google Scholar 

  • Tribbia, J. J., and R. A. Anthes, 1987: Scientific basis of modern weather prediction. Science, 237, 493–499.

    Article  Google Scholar 

  • Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682–703.

    Article  Google Scholar 

  • ——, R. A. Petersen, K. F. Brill, P. J. Kocin and J. J. Tuccillo, 1987: Synergistic interactions between an upper-level jet streak and diabatic processes that influence the development of a low-level jet and a secondary coastal cyclone. Mon. Wea. Rev., 115, 2227–2261.

    Article  Google Scholar 

  • Zack, J. W., and M. L. Kaplan, 1987: Numerical simulations of the subsynoptic features associated with the AVE-SESAME I case. Part I: The preconvective environment. Mon. Wea. Rev., 115, 2367–2394.

    Article  Google Scholar 

  • Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary-boundary-layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594–1609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 American Meteorological Society

About this chapter

Cite this chapter

Anthes, R.A. (1990). Advances in the Understanding and Prediction of Cyclone Development with Limited-Area Fine-Mesh Models. In: Newton, C.W., Holopainen, E.O. (eds) Extratropical Cyclones. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-944970-33-8_12

Download citation

Publish with us

Policies and ethics