The Barometer

  • H. Howard Frisinger
Part of the Meteorological Monographs book series (METEOR)


The invention of this vital instrument which measures the atmospheric pressure or “weight” was another product of seventeenth-century investigations. Before discussing its early development, however, it might be appropriate to consider the basic concept of the barometer—the idea that air has weight.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.C. Crombie, Augustine to Galileo—The History of Science (Cambridge: Harvard University Press, 1953), p. 238.Google Scholar
  2. 2.
    L.F. Kaemtz, A Complete Course in Meteorology trans. C.V. Walker (London: Hippolyte Bailliere, 1845), p. 232.Google Scholar
  3. 3.
    Galileo, Le opere, ed. nat. (Florence: 1884), 4:167.Google Scholar
  4. 4.
    Galileo, Dialogues Concerning Two New Sciences, trans. Henry Crew and Alfonso DeSalvio (New York: The Macmillan Company, 1914), pp. 79–83.Google Scholar
  5. 5.
    Harvey A. Zinszer, “Meteorological Mileposts,” Scientific Monthly 58 (1944): 261.Google Scholar
  6. 6.
    E. Saul, An Account of the Barometer (London: 1730), pp. 4–5.Google Scholar
  7. 7.
    Ibid., p. 5.Google Scholar
  8. 8.
    Blaise Pascal, The Physical Treatise of Pascal, trans. I.H.B. and A.G.H. Spiers (New York: Columbia University Press, 1937), p. 166.Google Scholar
  9. 9.
    René Descartes, Ouevres de Descartes, ed. Chas. Adam et Paul Tannery (Paris: 1897), 1:205–208.Google Scholar
  10. 10.
    According to Descartes, a vortex was a collection of particles of very subtle matter endowed with a rapid rotary motion around an axis which is also the axis of a sun or a planet. He attempted to account for the formation of the universe, and the movements of the bodies composing it, by a theory of vortices. For a concise discussion of this theory of vortices, see “Descartes,” Encyclopaedia Britannica, 11th ed. (1911), 7: 86.Google Scholar
  11. 11.
    The aether was supposed to be such a subtle matter that it could penetrate the pores of the tube.Google Scholar
  12. 12.
    E. Gerland, “Report of the International Meteorological Congress Held at Chicago, Ill., August 21–24, 1893,” ed. O.L. Fassig, U.S. Weather Bureau Bulletin, No. 11, Part 3 (Washington, D.C.: 1896): 690.Google Scholar
  13. 13.
    Descartes, op. cit., (1903 ed.), 5:99.Google Scholar
  14. 14.
    W.E.K. Middleton. The History of the Barometer (Baltimore: The Johns Hopkins Press, 1964), p. 46.Google Scholar
  15. 15.
    For a thorough discussion of what little is known concerning Berti’s work, see W.E.K. Middleton, The History of the Barometer (Baltimore: The Johns Hopkins Press, 1964), pp. 10–18.Google Scholar
  16. 16.
    Florian Cajori, A History of Physics (New York: The Macmillan Company, 1906), p. 65.Google Scholar
  17. 17.
  18. 18.
    For a complete and excellent discussion on the development of the barometer, see W.E.K. Middleton, The History of the Barometer (Baltimore: The Johns Hopkins Press, 1964).Google Scholar
  19. 19.
    Robert Hooke, Micrographia (London: 1665). The wheel barometer is described in the Preface of this work.Google Scholar
  20. 20.
    Hooke,“ ”Self-registering instrument,“ Trans. Roy. Soc. Edinburgh 15 (1678): 503. See also William Ellis, ”Brief Historical Account of the Barometer,“ Quart. Jour. of the Roy. Meteor. Soc. 12 (1886): 149.Google Scholar
  21. 21.
    Middleton, op. cit., p. 71.Google Scholar
  22. 22.
    Ibid., p. 75.Google Scholar
  23. 23.
    Robert Boyle, Continuation of New Experiments (1969) pp. 68–73.Google Scholar
  24. 24.
    Phil. Trans. 7 (1672): 5027–30.Google Scholar
  25. 25.
    Blaise Pascal, Traitez de l’equilibre des liqueurs, 2nd ed. (Paris: 1698), pp. 207–208.Google Scholar
  26. 26.
    Thomas Birch, History of the Royal Society (London: 1756), 2: 298.Google Scholar
  27. 27.
    Joachim D’Alencé, Curieux traité de mathematique ou par le mouyen de trois instruments, a sauvoir, du barometre, du thermometre, du notiometre, du hygiometrechrw(133), (Paris: 1713), pp. 19–20.Google Scholar
  28. 28.
    Christian Huygens, Oeuvres Completes De Christiaan Huygens, (La Haye: Martinus Nijhoff, 1897), 7:238–242.Google Scholar
  29. 29.
    Middleton, op. cit., pp. 91–92.Google Scholar
  30. 30.
    Ibid., pp. 110–111.Google Scholar
  31. 31.
    Johann Bernoulli’s treatise, “Le baromètre in équerre,” is given in Jean De Luc, Recherches sur Les Modifications de L’Atmosphere, (Paris: 1784), 1:29–36. This type of instrument had previously been proposed by J. Dominic Cassini. See Middleton, op. cit., pp. 115–116.Google Scholar
  32. 32.
    See the note by the Abbé de la Caille in Pierre Bouguer’s posthumous Traite d’Optique (Paris: 1760), p. 323.Google Scholar
  33. 33.
    Jean De Luc, Recherches sur les modifications de l’atmosphere, 2nd ed., (Paris: 1784), 2:3–5.Google Scholar
  34. 34.
    A Wolf, A History of Science, Technology, and Philosophy in the 18th Century (New York: The Macmillan Co., 1939), p. 306.Google Scholar
  35. 35.
    Phil. Trans. 66 (1776): 381.Google Scholar
  36. 36.
    Virorum Celeberr. Got. Gul. Leibnitti et Johan. Bernoulli Commercium Philosophicum et Mathematicum, 2 vols. (Lausanne and Geneva, 1745), p. 368.Google Scholar
  37. 37.
    Ibid., II, p. 70.Google Scholar
  38. 38.
    G. Hellmann, Meteorol. Zeits. 8 (1891): 158–159.Google Scholar
  39. 39.
    Virorum Celeberr…., op. cit., 2:78.Google Scholar

Copyright information

© American Meteorological Society 1983

Authors and Affiliations

  • H. Howard Frisinger
    • 1
  1. 1.Colorado State UniversityUSA

Personalised recommendations