Advertisement

The Beginning

  • H. Howard Frisinger
Part of the Meteorological Monographs book series (METEOR)

Abstract

As with any science, it is impossible to determine an exact beginning for meteorology. A distinction must be made between meteorology as a science and meteorology as a branch of knowledge. As we shall see, while meteorology as a science is comparatively young, as a branch of knowledge, it dates back to the origins of human civilizations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harvey A. Zinszer, “Meteorological Mileposts,” Scientific Monthly 58 (1944): 261.Google Scholar
  2. 2.
    The Jerusalem Bible (New York: Doubleday and Company, Inc., 1966), p. 727.Google Scholar
  3. 3.
    Job, Ct. 37, verse 22.Google Scholar
  4. 4.
    William Dampier, A History of Science (New York: The Macmillan Company, 1935), p. I.Google Scholar
  5. 5.
    G.A. Wainwright, The Sky Religion in Egypt (Cambridge: The University Press, 1938), p. 11.Google Scholar
  6. 6.
    According to the Greeks, Zeus governed the meteors; the symbol of his power being the lightning. See L. Dufour, “Les grandes époques de l’histoire de la météorologie,” Ciel et Terre 59 (1943): 356.Google Scholar
  7. 7.
    For a thorough discussion of the Babylonian civilization with emphasis on the science of that period, see O. Neugebauer, The Exact Sciences in Antiquity (New York: Harper Brothers, 1962).Google Scholar
  8. 8.
    George Sarton, A History of Science: Ancient Science Through the Golden Age of Greece (Cambridge: Harvard University Press, 1960), pp. 74–94.Google Scholar
  9. 9.
    Gustav Hellmann, “The Dawn of Meteorology,” Quarterly Journal of the Royal Meteorological Society 34 (1908): 223.Google Scholar
  10. 10.
  11. 11.
    Ibid., p. 224.Google Scholar
  12. 12.
    Howard Eves, An Introduction to the History of Mathematics (New York: Holt, Rinehart and Winston, 1969), p. 50.Google Scholar
  13. 13.
    David Eugene Smith, History of Mathematics (New York: Dover Publications, Inc., 1958), p. 67.Google Scholar
  14. 14.
    Kathleen Freeman, The Pre-Socratic Philosophers, 3rd ed. (Oxford: Basel Blackwell, 1953), p. 51.Google Scholar
  15. 15.
    W. S. Fowler, The Development of Scientific Method (London: Pergamon Press, 1962), p. 5.Google Scholar
  16. 16.
    Seneca, Quaestiones Naturales, trans. John Clarke (London: Macmillan and Co., Ltd., 1910), p. 174.Google Scholar
  17. 17.
    See H. Howard Frisinger, “Early Theories on the Nile Floods,” Weather 20 (1965): 206–208.CrossRefGoogle Scholar
  18. 18.
    Seneca, op. cit., p. 67.Google Scholar
  19. 19.
    Sarton, op. cit., p. 173.Google Scholar
  20. 20.
    Sigmund Gunther and W. Windelband, Geschichte Der Antiken Naturwissenschaft und Philosophie (Nordlingen: Verlag Der C. H. Beckschen Buchhandlung, 1888), p. 143.Google Scholar
  21. 21.
    Hellmann, op. cit., p. 224.Google Scholar
  22. 22.
    Fowler, op. cit., p. 5.Google Scholar
  23. 23.
    The opposite, in fact, is true. Adiabatic compression increases the temperature, while adiabatic dilatation decreases it.Google Scholar
  24. 24.
    Daniel E. Gershenson and Daniel A. Greenberg, Anaxagoras and the Birth of Scientific Method (New York: Blaisdell Publishing Co., 1964), p. 3.Google Scholar
  25. 25.
    Aristotle, Meteorologica, trans. H.D.P. Lee (Cambridge, Mass.: Harvard University Press, 1952), p. 81.Google Scholar
  26. 26.
    Gershenson and Greenberg, op. cit., p. 44.Google Scholar
  27. 27.
  28. 28.
    Aristotle, op. cit., p. 227.Google Scholar
  29. 29.
    For a detailed discussion of these different theories, see René Taton (ed.), Histoire Générale Des Sciences (Paris: Presses Universitaires De France, 1957), 1: 210–219.Google Scholar
  30. 30.
    Sarton, op. cit., p. 247.Google Scholar
  31. 31.
    Fowler, op. cit., p. 7.Google Scholar
  32. 32.
    Aristotle, op. cit., p. 227.Google Scholar
  33. 33.
    Kathleen Freeman, Ancilla to the Pre-Socratic Philosophers (Oxford: Basil Blackwell, 1948), pp. 51–68.Google Scholar
  34. 34.
    David E. Smith, History of Mathematics (New York: Dover Publications, Inc., I, 1958), p. 81.Google Scholar
  35. 35.
    M.R. Cohen and I.E. Drabkin, A Source Book in Greek Science (New York: McGraw-Hill Co., Inc., 1948), p. 383.Google Scholar
  36. 36.
    Seneca, op. cit., p. 195.Google Scholar
  37. 37.
  38. 38.
    Freeman, op. cit., pp. 304–306.Google Scholar
  39. 39.
    Hippocrates, The Genuine Works of Hippocrates, trans. Francis Adams (New York: William Wood and Co., I, 1886), pp. 156–183.Google Scholar
  40. 40.
    Text in Catalogus Codicum Astrologorum Graecorum 7 (1908): 183–187.Google Scholar
  41. 41.
    Sarton, op. cit., p. 447.Google Scholar
  42. 42.
    Secundus Plinius, Pliny: Natural History, trans. H. Rackham (London: William Heinemann Ltd., 1938), 1: 269.Google Scholar
  43. 43.
    For an account of some of the more modern theories on weather cycles, from weekly to fifty-year cycles, see Richard Gregory, “Weather recurrences and weather cycles,” Quart. Jour. of the Roy. Meteor. Soc. 41 (1930): 103–120.Google Scholar
  44. 44.
    Zinszer, op. cit., p. 261.Google Scholar

Copyright information

© American Meteorological Society 1983

Authors and Affiliations

  • H. Howard Frisinger
    • 1
  1. 1.Colorado State UniversityUSA

Personalised recommendations