Skip to main content

Formation of Rain: A Historical Perspective

  • Chapter
Historical Essays on Meteorology 1919–1995

Abstract

On 13 November 1946, Vincent Schaefer scattered dry ice pellets into the top of a supercooled stratiform cloud over Pittsfield, Massachusetts. Within minutes the seeded portion of the cloud was transformed into a mass of ice crystals (New York Times 1946; Lampbright 1970). But more than the cloud was transformed! Physicists, chemists, and engineers were attracted by the prospect of benefits to be realized from cloud seeding and by the romance of in situ cloud and aerosol research. Cloud physics quickly emerged as a recognized specialty in meteorology and became much more quantitative and laboratory oriented. Laboratories devoted to the study of clouds sprang up in several nations. Clouds themselves became subjects of experimentation. More than ever before, meteorology became a multidisciplinary science.

Every occurrence in nature is preceded by other occurrences which are its causes, and succeeded by others which are its effects. The human mind is not satisfied with observing and studying any natural occurrence alone, but takes pleasure in connecting every natural fact with what has gone before it, and with what is to come after it.

(John Tyndall 1872)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adderley, E.E., and E.G. Bowen, 1962: Lunar component in precipitation data. Science, 137, 749–750.

    Article  Google Scholar 

  • AMS, 1957: Willis Isbister Milham. Bull. Amer. Meteor. Soc., 38, 301.

    Google Scholar 

  • Arctowski, H., 1901a: Exploration of Antarctic lands. Geogr. J., 17, 150–180.

    Article  Google Scholar 

  • Arctowski, H., 1901b: The Antarctic voyage of the Belgica during the years of 1897, 1898, and 1899. Smithsonian Institution, Annual Rep. 377–388.

    Google Scholar 

  • Auer, A.H., 1971: Observations of ice crystal nucleation by drop freezing in natural clouds. J. Atmos. Sci., 28, 285–290.

    Article  Google Scholar 

  • Auer, A.H., 1972: Inferences about ice nucleation from ice crystal observations. J. Atmos. Sci., 29, 311–317.

    Article  Google Scholar 

  • aufm Kampe, H.J., H.K. Weickmann, and J.J. Kelly, 1951: The influence of temperature on the shape of ice crystals growing at water saturation. J. Meteor., 8, 168–174.

    Article  Google Scholar 

  • aufm Kampe, H.J., and H.H. Kedesby, 1952: Remarks on “Electron-microscope study of snow crystal nuclei.” J. Meteor., 9, 374–375.

    Article  Google Scholar 

  • Barkow, E., 1908: Zur entstehung der graupeln. Meteor. Z. 25, 456–458.

    Google Scholar 

  • Battan, L.J., 1953: Observations on the formation and spread of precipitation in convective clouds. J. Meteor., 10, 311–324.

    Article  Google Scholar 

  • Battan, L.J., and C. Reitan, 1957: Droplet size measurements in convective clouds. Artificial Stimulation of Rain, H. Weickmann and W. Smith, Eds., Pergamon, 184–191.

    Google Scholar 

  • Beard, K.V., 1992: Ice initiation in warm-base convective clouds: An assessment ofmicrophysical mechanisms. Atmos. Res., 28, 125–152.

    Article  Google Scholar 

  • Becker, R., and W. Doring, 1935: Kinetische behandlung der keimbildung in ubersattigten Dampfen. Ann. Phys., Leipzig, Ser. 6, 24, 719–752. (Translated by J. Vanier in U.S. NACA Tech. Memo. 1374, 43 pp.)

    Article  Google Scholar 

  • Benndorf, H., 1931: Alfred Wegener. Gerl. Beitr. Geophys., 31, 337–377.

    Google Scholar 

  • Bentley, W.A., 1904: Studies of raindrops and raindrop phenomena Mon. Wea. Rev., 32, 450–456.

    Article  Google Scholar 

  • Bentley, W.A., 1924: Forty years of study of snow crystals. Mon. Wea. Rev., 52, 530–532.

    Article  Google Scholar 

  • Bergeron, T., 1928: Über die Dreidimensional Verknüpfende Wetteranalyse. Geofysiske Publikosjoner, 111 pp.

    Google Scholar 

  • Bergeron, T., 1935: On the physics of cloud and precipitation. Proc. Verbaux Assoc. Météor. Int. Union Geodesy Geophys., Fifth General Assembly, Lisbon, Portugal, Dupont, Paris, 3–19, 173–178.

    Google Scholar 

  • Bergeron, T., 1972: L’origine de la théorie des noyaux de glace comme declencheurs de précipitation un cinquantenaire. J. Rech. Atmos., 6, 49–53.

    Google Scholar 

  • Berry, E.X., 1967: Cloud droplet growth by collection. J. Atmos. Sci., 24, 688–701.

    Article  Google Scholar 

  • Berry, E.X., and R.L. Reinhardt, 1974a: An analysis of cloud drop growth by collection. Part I: Double distributions. J. Atmos. Sci., 31, 1814–1824.

    Article  Google Scholar 

  • Berry, E.X., and R.L. Reinhardt, 1974b: An analysis of cloud drop growth by collection. Part II: Single initial distributions. J. Atmos. Sci., 31, 1825–1831.

    Article  Google Scholar 

  • Berry, E.X., and R.L. Reinhardt, 1974c: An analysis of cloud drop growth by collection. Part III: Accretion and self-collection. J. Atmos. Sci., 31, 2127–2135.

    Article  Google Scholar 

  • Berson, A., 1900: Fahrt des Ballons, “Phonix,” von 19 October 1893. Wissenschaftliche Luftfahrten, II, R. Assmann and A. Berson, Eds., Braunschweig, 183–194.

    Google Scholar 

  • Best, A.C., 1948: Formation of rain. Meteor. Mag., 77, 231–232.

    Google Scholar 

  • Bigg, E.J., 1953a: The supercooling of water. Ph.D. thesis, Imperial College, University of London, 170 pp.

    Google Scholar 

  • Bigg, E.J., 1953b: The supercooling of water. Proc. Phys. Soc. London, Ser. B, 66, 688–694.

    Article  Google Scholar 

  • Bigg, E.J., 1953c: The formation of atmospheric ice crystals by the freezing of droplets. Quart. J. Roy. Meteor. Soc., 79, 510–519.

    Article  Google Scholar 

  • Bigg, E.J., 1956: Counts of atmospheric freezing nuclei at Carnarvon, Western Australia, January 1956. Aust. J. Phys., 9, 561–565.

    Article  Google Scholar 

  • Bigg, E.J., 1957a: A new technique for counting ice-forming nuclei in aerosols. Tellus, 9, 394–400.

    Article  Google Scholar 

  • Bigg, E.J., 1957b: The fragmentation of freezing water drops Bull. Obs. Puy-de-Dome, 3, 65–67.

    Google Scholar 

  • Blanchard, D.C., 1949: The use of sooted screens for determining raindrop size and distribution. Project Cirrus Occasional Rep. 16, General Electric Research Laboratory, Schenectady, NY, 11 pp.

    Google Scholar 

  • Blanchard, D.C., 1978: Tor Bergeron, 1891–1977. Bull. Amer. Meteor. Soc., 59, 387–392.

    Article  Google Scholar 

  • Bowen, E.G., 1950: The formation of rain by coalescence. Aust. J. Sci. Res., Ser. A, 3, 193–213.

    Google Scholar 

  • Bowen, E.G., 1951: Radar observations on rain and their relation to the mechanisms of rain formation. J. Atmos. Terr. Phys., 1, 125–140.

    Article  Google Scholar 

  • Bowen, E.G., 1953: The influence of meteoritic dust on rainfall. Aust. J. Phys., 4, 490–497.

    Article  Google Scholar 

  • Bradley, D.A., M.A. Woodbury, and G.W. Brier, 1962: Lunar synodical period and widespread precipitation. Science, 137, 748–749.

    Article  Google Scholar 

  • Braham, R.R., Jr., 1961: Project Whitetop. Abstracts, Int. Conf on Cloud Physics, Canberra and Sydney, Australia, Australian Academy of Science and CSIRO, 9. 1.

    Google Scholar 

  • Braham, R.R., 1964: What is the role of ice in summer rain-showers? J. Atmos. Sci., 21, 640–645.

    Article  Google Scholar 

  • Braham, R.R., 1986a: The cloud physics of weather modification. WMO Bull., 55, 215–221, 308–315.

    Google Scholar 

  • Braham, R.R., 1986b: Coalescence-freezing precipitation mechanism. Preprints, Preprints, 10th Conf. on Planned and Inadvertent Weather Modification., Arlington, VA, Amer. Meteor. Soc., 142–145.

    Google Scholar 

  • Braham, R.R., and P. Spyers-Duran, 1967: Survival of cirrus crystals in clear air. J. Appl. Meteor., 6, 1053–1061.

    Article  Google Scholar 

  • Braham, R.R., and P. Squires, 1974: Cloud physics-1974. Bull. Amer. Meteor. Soc., 55, 543–586.

    Article  Google Scholar 

  • Braham, R.R., S.E. Reynolds, and J.H. Harrell, 1951: Possibilities for cloud seeding as determined by a study of cloud height versus precipitation. J. Meteor., 8, 416–418.

    Article  Google Scholar 

  • Braham, R.R., L.J. Battan, and H.R. Byers, 1957: Artificial nucleation of clouds. Cloud and Weather Modification, Meteor. Monogr., No. 11, Amer Meteor Soc., 47–85.

    Google Scholar 

  • Browning, K.A., and T.W. Harrold, 1969: Air motion and precipitation growth in a wave depression. Quart. J. Roy. Meteor. Soc., 95, 288–309.

    Article  Google Scholar 

  • Brunt, D., 1928: Physical and Dynamical Meteorology. Cambridge University Press, 428 pp.

    Google Scholar 

  • Byers, H.R., 1937: Synoptic and Aeronautical Meteorology. McGraw-Hill, 279 pp.

    Google Scholar 

  • Byers, H.R., 1955: Geographical differences in cloud populations. Arch. Meteor. Geophys. Bioklimatol., 8, 180–184.

    Article  Google Scholar 

  • Byers, H.R., 1974: History of weather modification. Weather and Climate Modification, W. Hess, Ed., Wiley, 3–44.

    Google Scholar 

  • Byers, H.R., and R.K., Hull, 1955: A census of cumulus cloud height versus precipitation in the vicinity of Puerto Rico during the winter and spring of 1953–54. J. Meteor., 12, 176–178.

    Article  Google Scholar 

  • Coons, R.D., E.L. Jones, and R. Gunn., 1949: Artificial production of precipitation in cumulus clouds. Research Paper 33, U.S. Weather Bureau, Washington, DC, 46 pp.

    Google Scholar 

  • Cooper, W.A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, R. Braham Jr., Ed., Amer. Meteor. Soc., 29–41.

    Google Scholar 

  • Craddock, J.M., 1949: The development of cumulus cloud: Results of observations in Malaya. Quart. J. Roy. Meteor. Soc., 75, 147–153.

    Article  Google Scholar 

  • Cunningham, R.M., 1951: Some observations of natural precipitation processes. Bull. Amer. Meteor. Soc., 32, 334–343.

    Google Scholar 

  • Cunningham, R.M., 1952: Distribution and growth of hydrometeors around a deep cyclone. Massachusetts Institute of Technology Research Rep. 18, 59 pp.

    Google Scholar 

  • Cwilong, B.M., 1947: Sublimation in a Wilson chamber. Proc. Roy. Soc. London, Ser. A, 190, 137–143.

    Article  Google Scholar 

  • Davies, D.A., 1950: Tropical rainfall from cloud which did not extend to the freezing level. Meteor. Mag., 79, 354.

    Google Scholar 

  • Defant, A., 1905: Gesetzmässigkeiten in der verteilung der verschiedenen tropfengrössen bei regenfällen. Akademie der Wissenschaften, Vienna Sitzungsberichte, Mathematisch-Wissenschaftliche Klasse, 2a, 114, 585–646.

    Google Scholar 

  • de Saussure, H.B., 1783: Essais sur l’hygrométrie. S. Fauche Pere et Fils, 524 pp.

    Google Scholar 

  • Diem, M., 1942: Messungen der grösse von wolkenelementen, I. Ann. Hydrogr., 70, 142–150.

    Google Scholar 

  • Diem, M., 1948: Messungen der Grösse von Wolkenelementen, II. Meteor. Rundsch., 1, 261–273.

    Google Scholar 

  • Dobrowoiski, A., 1903: La neige et le givre. Résultats du voyage du s. y. Belgica en 1897–1898–1899. Rapports Scientifiques. Météorologie, Commision de la Belgica, 78 pp.

    Google Scholar 

  • Douglass, C.K.M., 1934: The physical processes of cloud formation. Quart. J. Roy. Meteor. Soc., 60, 333–341.

    Article  Google Scholar 

  • Douglass, R.H., K.L.S. Gunn, and J.S. Marshall, 1957: Pattern in the vertical of snow generation. J. Meteor., 14, 95–114.

    Article  Google Scholar 

  • Dufour, L., 1861: Cher das gefrieren des wasser und über die bildund des hagels. Ann. Phys., 114, 530–554.

    Google Scholar 

  • Eadie, W.J., 1971: A molecular theory of the homogeneous nucleation of ice from supercooled water. Ph.D. dissertation, University of Chicago, 177 pp.

    Google Scholar 

  • Elliott, R.D., 1974: Experience of the private sector. Weather and Climate Modification, W. Hess, Ed., Wiley, 45–89.

    Google Scholar 

  • Fahrenheit, D.G., 1724: Experimenta e observationes de congelatione aquae in vacuo factae. Philos. Trans. Roy. Soc. London, 33, 78–84.

    Article  Google Scholar 

  • Findeisen, W., 1932: Messungen der grosse und anzahl der nebel-tropfen zum studium der koagulation inhomogenen nebels. Gerl. Beit. Geophys., 35, 295–340.

    Google Scholar 

  • Findeisen, W., 1938: Die kolloidmeteorologischen vorgänge bei der nieder-schlagsbildung. Meteor. Z., 55, 121–133.

    Google Scholar 

  • Findeisen, W., 1939: Das verdampfen der wolken und regentropfen. Meteor. Z., 56, 453–460.

    Google Scholar 

  • Findeisen, W., 1942: Experimentelle untersuchungen über die atmosphärishen eisteilchenbildung. Meteor. Z., 59, 349–353.

    Google Scholar 

  • Findeisen, W., and G. Schulz, 1944: Experimentelle untersuchugen zur atmosphärischen eisteilchenbildung, I. Forschungs Erf. Reichswett., Ser. A, 27, 38–48.

    Google Scholar 

  • Fitzgerald, J.W., 1972: A study of the initial phase of cloud droplet growth by condensation. Ph.D. dissertation, University of Chicago, 144 pp.

    Google Scholar 

  • Flammarion, C., 1873: The Atmosphere. Translated by J. Glaisher. Harper, 453 pp.

    Google Scholar 

  • Fletcher, N., 1962: The Physics of Rainclouds. Cambridge University Press, 386 pp.

    Google Scholar 

  • Frössling, N., 1938: Über die verdunstung fallender tropfen. Geri. Beitr. Geophys, 52, 170–216.

    Google Scholar 

  • Foster, H., 1950: An unusual observation of lightning. Bull. Amer. Meteor. Soc., 31, 140–141.

    Google Scholar 

  • Fritsch, K., 1853: Uber schneefiguren. Sitzungsber. Akad. Wiss. Wein (Math.-Nature Kl.), 11, 492–499.

    Google Scholar 

  • Georgii, W., 1930: Das flugzeug als aerologisches forschungmittel. Beitr. Phys. Atmos., 16, 199–223.

    Google Scholar 

  • Glaisher, J., 1863: An account of meteorological and physical observations in five balloon ascents in the year 1863. Rep. on the 33d Meeting of the British Association for Advancement of Science, 426–516.

    Google Scholar 

  • Glaisher, J., 1871: Travels in the Air. Bentley, 398 pp.

    Google Scholar 

  • Graham, T., 1861: Liquid diffusion applied to analysis. Philos. Trans. Roy. Soc. London, 151, 183–224.

    Article  Google Scholar 

  • Gregg, W.R., 1930: Aeronautical Meteorology. 2d ed. Ronald Press, 403 pp.

    Google Scholar 

  • Guilbert, G., 1921: On the formation of rain and the origin of cirrus. Compt. Rend. Acad. Sci., 173, 999–1001.

    Google Scholar 

  • Guilbert, G., 1922: La prévision scientifique du temps, traité pratique. Augustin Challemel, 439 pp.

    Google Scholar 

  • Gunn, R., and G.D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243–248.

    Article  Google Scholar 

  • Hagemann, V., 1936: Eine methode zur bestimmung der grösse der nebel und wolkenelemente. Gerl. Beitr. Phys. freien Atmos. 46, 261–282.

    Google Scholar 

  • Haggard, W.H., 1948: Colloidal instability of tropical clouds. Bull. Amer. Meteor. Soc., 29, 139–140.

    Google Scholar 

  • Hallett, J., 1964: Experimental studies of the crystallization of supercooled water. J. Atmos. Sci., 21, 671–682.

    Article  Google Scholar 

  • Hallett, J., and B.J. Mason, 1958: The influence of temperature and super-saturation on the habit of ice crystals grown from the vapor. Proc. Roy. Soc. London, Ser. A, 247, 440–453.

    Article  Google Scholar 

  • Hallett, J., and S.C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26.

    Article  Google Scholar 

  • Hallett, J., R.I. Sax, D. Lamb, and A.S.R. Murty, 1978: Aircraft measurements of ice in Florida cumuli. Quart. J. Roy. Meteor. Soc., 104, 631–651.

    Article  Google Scholar 

  • Hanajima, M., 1944: On the conditions of growth of snow crystals. Low Temp. Sci., A1, 53–65

    Google Scholar 

  • Hanajima, M., 1949: On the growth conditions of man-made snow. Low Temp. Sci., A2, 23–29

    Google Scholar 

  • Hann, J.V., 1906: Lehrbuch der Meteorologie. 2d ed. Leipzig. 642 pp.

    Google Scholar 

  • Havens, B.S., 1952: History of Project Cirrus. General Electric Research Lab. Rep. RL-756, 102 pp.

    Google Scholar 

  • Hertzman, O., and P.V. Hobbs, 1988: The mesoscale and microscale structure and organizations of clouds in midlatitude cyclones. XIV: Three-dimensional airflow and vorticity budget of rainbands in a warm occlusion. J. Atmos. Sci., 45, 893–914.

    Article  Google Scholar 

  • Heverly, J.R., 1948: A study in atmospheric condensation. Ph.D. dissertation, The Pennsylvania State College, 141 pp.

    Google Scholar 

  • Heverly, J.R., 1949: Supercooling and crystallization. Eos, Trans. Amer. Geophys. Union, 30, 205–210.

    Article  Google Scholar 

  • Heywood, G.S.P., 1940: Rain formation in the tropics. Quart. J. Roy. Meteor. Soc., 66, 46.

    Google Scholar 

  • Hobbs, P.V., 1974: Ice Physics. Clarendon, 837 pp.

    Google Scholar 

  • Hobbs, P.V., 1978: Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. Space Phys., 16, 741–755.

    Article  Google Scholar 

  • Hobbs, P.V., 1990: Ice in clouds. Preprints, Cloud Physics Conf., San Francisco, CA, Amer. Meteor. Soc., 600–606.

    Google Scholar 

  • Hoffer, T.E., and R.R. Braham, 1962: A laboratory study of atmospheric ice particles. J. Atmos. Sci., 19, 232–235.

    Article  Google Scholar 

  • Holzman, B., 1936: A note on Bergeron’s ice-nuclei hypothesis for the formation of rain. Bull. Amer. Meteor. Soc., 17, 331–333.

    Google Scholar 

  • Houghton, H.G., 1933: A study of the evaporation of small water drops. Phys., 4, 419–424.

    Article  Google Scholar 

  • Houghton, H.G., 1938: Problems connected with the condensation and precipitation processes in the atmosphere. Bull. Amer. Meteor. Soc., 19, 152–159.

    Google Scholar 

  • Houghton, H.G., 1950: A preliminary quantitative analysis of precipitation mechanisms. J. Meteor., 7, 363–369.

    Article  Google Scholar 

  • Howell, W., 1949: The growth of cloud drops in uniformly cooled air. J. Meteor., 6, 134–149.

    Article  Google Scholar 

  • Humphreys, W.J., 1940: Physics of the Air. 3d ed. McGraw-Hill, 676 pp.

    Google Scholar 

  • Hunt, T.L., 1949: Formation of rain. Meteor. Mag., 78, 26.

    Google Scholar 

  • Isono, K., 1955: On ice crystal nuclei and other substances found in snow crystals. J. Meteor., 12, 456–462.

    Article  Google Scholar 

  • Jacobi, W., 1955: Homogeneous nucleation in supercooled water. J. Meteor., 12, 408–409.

    Article  Google Scholar 

  • Jeffreys, H., 1918: Some problems of evaporation. Philos. Mag., 35, 270–280.

    Article  Google Scholar 

  • Johnson, D.B., 1987: On the relative efficiency of coalescence and riming. J. Atmos. Sci., 44, 1671–1680.

    Article  Google Scholar 

  • Jones, D.M.A., and L.A. Dean, 1953: A raindrop camera. Illinois State Water Survey Research Rep. 31, 50–64.

    Google Scholar 

  • Jones, R.F., 1951: Rain from non-freezing clouds. Meteor. Mag., 80, 273–274.

    Google Scholar 

  • Kepler, J., [1611] 1966: On the shapes of snow crystals. The Six-Cornered Snowflake. Translated by B.J. Mason. Clarendon, Reprint, 47–56.

    Google Scholar 

  • Knollenberg, R.G., 1970: The optical array: An alternative to scattering or extinction for airborne particle size determination. J. Appl. Meteor., 9, 86–103.

    Article  Google Scholar 

  • Kobayashi, T., 1957: Experimental researches on the snow crystal habit and growth by means of a diffusion cloud chamber. J. Meteor. Soc. Japan, 35, 38–44.

    Google Scholar 

  • Kobayashi, T., 1961: The growth of snow-crystals at low supersaturations. Philos. Mag., 6, 1363–1370.

    Article  Google Scholar 

  • Koenig, L.R., 1962: Ice in the summer atmosphere; an inquiry into its structure, genesis and metamorphosis. Ph.D. dissertation, University of Chicago, 176 pp.

    Google Scholar 

  • Koenig, L.R., 1963: The glaciating behavior of small cumulonimbus clouds. J. Atmos., Sci., 20, 29–47.

    Article  Google Scholar 

  • Köhler, H., 1921: Über die tropfengrössen der wolken und die kondensation. Meteor. Z., 38, 359–365.

    Google Scholar 

  • Köhler, H., 1925a: Untersuchengen über die elemente des nebels und der wolken. Medd. Meteor.-hydr. Anst. Stockholm, 2, 73 pp.

    Google Scholar 

  • Köhler, H., 1925b: Über tropfengruppen in wolken. Meteor. Z., 42, 137–143, 463–467.

    Google Scholar 

  • Köhler, H., 1926: Zur thermodynamik der kondensation an hygroskopischen kernen and bemerkungen über das zusammenfliessen der tropfen. Medd. Statens Meteor.-Hydrograf., 3, 16 pp.

    Google Scholar 

  • Köhler, H., 1929. Wolkenuntersuchungen dem sonnblick im herbst 1928. Meteor. Z., 46, 409–420.

    Google Scholar 

  • Kotch, W.J., 1947: An example of colloidal instability of clouds in tropical latitudes. Bull. Amer. Meteor. Soc., 28, 87–89.

    Google Scholar 

  • Krastanow, L., 1940: Über die bildung der unterkuhlten wassertropfen und der eiskristalle in der freien atmosphäre. Meteor. Z., 57, 357–371.

    Google Scholar 

  • Krastanow, L., 1941: Beitrag zur theorie der tropfen und kristallbildung in der atmosphäre. Meteor. Z., 58, 37–45.

    Google Scholar 

  • Kraus, E.B., and B. Smith, 1949: Theoretical aspects of cloud drop distributions. Aust. J. Sci. Res., Ser. A., 2, 376–388.

    Google Scholar 

  • Kumai, M., 1951: Electron-microscope study of snow crystal nuclei. J. Meteor., 8, 151–156.

    Article  Google Scholar 

  • Kumai, M., 1957: Electron-micoscope study of snow crystal nuclei, II. Geopfys. Pura Appl., 36, 169–181.

    Article  Google Scholar 

  • Kumai, M., 1961: Snow crystals and the identification of the nuclei in northern United States of America. J. Meteor., 18, 139–150.

    Article  Google Scholar 

  • Kumai, M., and K.E. Francis, 1962: Nuclei in snow and ice crystals on the Greenland ice cap under natural and artificially simulated conditions. J. Atmos. Sci., 19, 474–481.

    Article  Google Scholar 

  • Lampbright, H., 1970: The Politics of an Emergent Technology. Inter-University Case Prog., 506 pp.

    Google Scholar 

  • Langmuir, I., 1944: Supercooled water droplets in rising currents of saturated air. Collected Works of Irving Langmuir, C.G. Suits, Ed., Pergamon, 199–334.

    Google Scholar 

  • Langmuir, I., 1948: The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteor., 5, 175–192.

    Article  Google Scholar 

  • Langmuir, I., and K.B. Blodgett, 1945. A mathematical investigation of water-drop trajectories. Collected Works of Irving Langmuir, C.G. Suits, Ed., Pergamon, 348–393.

    Google Scholar 

  • Langsdorf, A., 1936: A continuously sensitive diffusion cloud chamber. Rev. Sci. Insts., 10, 91–103.

    Article  Google Scholar 

  • Laws, J.O., 1941: Measurements of the fall-velocity of water-drops and rain-drops. Eos, Trans. Amer. Geophys. Union, 22, 709–721.

    Article  Google Scholar 

  • Lenard, P., 1904: Ueber regen. Meteor. Zeit., 21, 248–262. Translated by R.H. Scott in Quart. J. Roy. Meteor. Soc., 31, 62–73.

    Google Scholar 

  • Leopold, L.B., and M.H. Halstead, 1948: First trials of the Schaefer—Langmuir dry-ice cloud-seeding technique in Hawaii. Bull. Amer. Meteor. Soc., 29, 525–534.

    Google Scholar 

  • Lhermitte, R.M., 1952: Les “bandes supérieures” dans la structure verticale des echos de pluie. Compt. Rend. Acad. Sci., 235, 1414–1416.

    Google Scholar 

  • Loeb, L.B., 1934: The Kinetic Theory of Gases. McGraw-Hill, 687 pp.

    Google Scholar 

  • Ludlam, F.H., 1951: The production of showers by the coalescence of cloud droplets. Quart. J. Roy. Meteor. Soc., 77, 402–417.

    Article  Google Scholar 

  • Ludlam, F.H., 1958: The hail problem. Nubila, 1, 12–94.

    Google Scholar 

  • MacDougal, F.H., 1948: Physical Chemistry. Macmillan, 722 pp.

    Google Scholar 

  • Magono, C., and C.W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci., Hokkaido Univ., Ser VII (Geophysics), 2, 321–335.

    Google Scholar 

  • Mann, G., 1940: Untersuchen über die aerologischen bedingungen für die niederschlagsbildung in der atmosphäre an hand des aufstiegsmaterials der wetterflugstelle zu königsberg/Pr. Beit. Phys. Atmos., 26, 121–151.

    Google Scholar 

  • Marriott, W., 1904: Some account of the meteorological work of the late James Glaisher, F.R.S. Quart. J. Roy. Meteor. Soc., 30, 1–28.

    Article  Google Scholar 

  • Marshall, J.S., and M.P. Langleben, 1954: A theory of snow-crystal habit and growth. J. Meteor., 11, 104–120.

    Article  Google Scholar 

  • Mason, B.J., 1952: The spontaneous crystallization of supercooled water. Quart. J. Roy. Meteor. Soc., 78, 22–27.

    Article  Google Scholar 

  • Mason, B.J., 1953: The growth of ice crystals in a supercooled water cloud. Quart. J. Roy. Meteor. Soc., 79, 104–111.

    Article  Google Scholar 

  • Mason, B.J., 1971: The Physics of Clouds. Clarendon Press, 671 pp.

    Google Scholar 

  • Mason, B.J., and J. Maybank, 1960: The fragmentation and electrification of freezing water drops. Quart. J. Roy. Meteor. Soc., 86, 176–186.

    Article  Google Scholar 

  • McAdie, A., 1895: Natural rain-makers. Pop. Sci. Mon., 47, 642–648.

    Google Scholar 

  • McCain, J.F., L.R. Hoxit, R.A. Maddox, C.F. Chappell, and F. Caracena, 1979: Meteorology and hydrology in Big Thompson River and Cache la Poudre Basins. Storm of July 31—August 1, 1976, in the Big Thompson River and Cache la Poudre River Basins, Larimer and Weld Counties, Colorado. U.S. Geological Survey Paper 1115, 152 pp.

    Google Scholar 

  • McDonald, J.E., 1953a: Erroneous applications of Raoult’s Law. J. Meteor., 10, 68–70.

    Article  Google Scholar 

  • McDonald, J.E., 1953b: The physics of cloud modification. Advances in Geophysics, Vol. 5, Academic Press, 223–303.

    Google Scholar 

  • McDonald, J.E., 1963: Use of the electrostatic analogy in studies of ice crystal growth. J. Appl. Math. Phys., 14, 610–620.

    Article  Google Scholar 

  • Melzak, A.F., and W. Hitschfeld, 1953: A mathematical treatment of random coalescence. Stormy Weather Group Science Rep. MW-11, McGill University, 28 pp.

    Google Scholar 

  • Middleton, W.E.K., 1965: A History of the Theories of Rain and Other Forms of Precipitation. Watts, 206 pp.

    Google Scholar 

  • Milham, W.I., 1931: Meteorology. Macmillan, 549 pp.

    Google Scholar 

  • Mordy, W.A., 1959: Computations of the growth by condensation of a population of cloud droplets. Tellus, 11, 16–44.

    Article  Google Scholar 

  • Mordy, W.A., and L.E. Eber, 1954: Observations of rainfall from warm clouds. Quart. J. Roy. Meteor. Soc., 80, 48–57.

    Article  Google Scholar 

  • Mossop, S.C., 1963: Atmospheric ice nuclei. Z. Angew. Math. Phys., 14, 456–486.

    Article  Google Scholar 

  • Mossop, S.C., 1968: Comparison between concentration of ice crystals in cloud and the concentration of ice nuclei. J. Rech. Atmos., 3, 119–124.

    Google Scholar 

  • Mossop, S.C., 1985: The origin and concentration of ice crystals in clouds. Bull. Amer. Meteor. Soc., 66, 264–273.

    Article  Google Scholar 

  • Mousson, A., 1858: Eine tatsachen betreffend das schmelzen und gefrieren des wassers. Ann. Phys., 105, 161–174.

    Article  Google Scholar 

  • Müller, H., 1928: Zur allgemeinen theorie der raschen koagulation. Kolloidchem, 27, 223–250.

    Article  Google Scholar 

  • Murgatroyd, R.J., and M.P. Garrod, 1960: Observations of precipitation elements in cumulus clouds. Quart. J. Roy. Meteor. Soc., 86, 167–175.

    Article  Google Scholar 

  • Nakaya, U., 1938: Artificial snow. Quart. J. Roy. Meteor. Soc., 64, 619–624.

    Article  Google Scholar 

  • Nakaya, U., 1951: The formation of ice crystals. Compendium of Meteorology, T. Malone, Ed., Amer. Meteor. Soc., 207–220.

    Google Scholar 

  • Nakaya, U., 1954: Snow Crystals: Natural and Artificial. Harvard University Press, 510 pp.

    Book  Google Scholar 

  • Nakaya, U., and I. Sato, 1935: On the artificial production of frost crystals with reference to the mechanism of formation of snow crystals. J. Fac. Sci., Hokkaido Univ., Ser. 2, 1, 206–214.

    Google Scholar 

  • Needham, J., and Lu Gwen-Djen, 1961: The earliest snow crystal observations. Weather, 12, 319–327.

    Article  Google Scholar 

  • Neiburger, M., and C.W. Chien, 1960: Computations of the growth of cloud drops by condensation using an electronic digital computer. Physics of Precipitation, Geophys. Monogr., No. 5, Amer. Geophys. Union, 191–210.

    Google Scholar 

  • New York Times, 1946: Three mile cloud made into snow by dry ice dropped from plane. 14 November, p. 25.

    Google Scholar 

  • Niederdorfer, E., 1932: Messungen der grösse der regentropfen. Meteor. Z., 49, 1–14.

    Google Scholar 

  • Peppler, W., 1936: Zur aerologie der wolken, besonders des nimbus. Beit. Phys. Atmos., 23, 275–288.

    Google Scholar 

  • Petterssen, S., 1940: Weather Analysis and Forecasting. McGraw-Hill, 503 pp.

    Google Scholar 

  • Pound, G.M., L.A. Madonna, and S.L. Peake, 1953: Critical supercooling of pure water droplets by a new microscopic technique. J. Colloid Sci., 8, 187–193.

    Article  Google Scholar 

  • Pruppacher, H.R., and J.D. Klett, 1978: Microphysics of Clouds and Precipitation. Reidel, 714 pp.

    Book  Google Scholar 

  • Rangno, A.R., and P.V. Hobbs, 1988: Criteria for the onset of significant concentrations of ice particles in cumulus clouds. Atmos. Res., 22, 1–13.

    Article  Google Scholar 

  • Reynolds, O., 1879a: On the manner in which raindrops and hailstones are formed. Mem. Manchester Lit. Philos. Soc., 6, 48–60.

    Google Scholar 

  • Reynolds, O., 1879b: The influence of electricity on colliding water drops. Proc. Roy. Soc. London, 28, 406–409.

    Google Scholar 

  • Rooth, C., 1957: On a special aspect of the condensation process and its importance in the treatment of cloud particle growth. Tellus, 9, 372–337.

    Article  Google Scholar 

  • Rotch, L., 1900: Sounding the Ocean of Air. Society for Promoting Christian Knowledge, 184 pp.

    Google Scholar 

  • Schaefer, V.J., 1941: A method of making snowflake replicas. Science, 93, 239–240.

    Article  Google Scholar 

  • Schaefer, V.J., 1946: The production of ice crystals in a cloud of supercooled water droplets. Science, 104, 457–459.

    Article  Google Scholar 

  • Schmauss, A., 1919: Randbemerkungen II. Meteor. Z., 36, 11–16.

    Google Scholar 

  • Schmauss, A., 1920: Kolloidchemie und meteorologie. Meteor. Z., 37, 1–8.

    Google Scholar 

  • Schmauss, A., and A. Wigand, 1929: Die Atmosphâre als Kolloid. Braunschweig, 74 pp.

    Book  Google Scholar 

  • Schmidt, W., 1909: Eine unmittelbare bestimmung der fallgeschwindigkeit von regentropfen. Akademie der Wissenschaften, Vienna, Sitzungsberichte, Mathematisch-Wissenschaftliche Klasse, 2a, 118, 71–84

    Google Scholar 

  • Schnell, R.C., 1974: Biogenic sources of atmospheric ice nuclei. Ph.D. dissertation, University of Wyoming, 113 pp.

    Google Scholar 

  • Schumann, T.E.W., 1938: The theory of hail formation. Quart. J. Roy. Meteor. Soc., 64, 3–21.

    Article  Google Scholar 

  • Schumann, T.E.W., 1940: Theoretical aspects of the size distribution of fog particles. Quart. J. Roy. Meteor. Soc., 66, 195–207.

    Article  Google Scholar 

  • Schwarzbach, M., 1986: Alfred Wegener, The Father of Continental Drift. Science Tech., Inc., 241 pp.

    Google Scholar 

  • Schwerdtfeger, W., 1948: Über die bildung von reganschauern uber see. Meteor. Rundsch., 1, 453–456.

    Google Scholar 

  • Scoresby, W., 1820: An Account of the Arctic Regions with a History and Description of the Northern Whale-Fishery. Vol. 1. Archibald Constable, 419–445.

    Book  Google Scholar 

  • Sharenow, M., 1939: Translation of W. Findeisen’s Colloidal–Meteorological Processes in the Formation of Precipitation. Evans Signal Laboratory.

    Google Scholar 

  • Shaw, N., 1930: Manual of Meteorology. Vol. III, The Physical Processes of Weather, Cambridge, 340 pp.

    Google Scholar 

  • Simpson, G.C., 1941: On the formation of cloud and rain. Quart. J. Roy. Meteor. Soc., 67, 99–133.

    Article  Google Scholar 

  • Smith, E.J., 1951: Observations of rain from non-freezing clouds. Quart. J. Roy. Meteor. Soc., 77, 33–43.

    Article  Google Scholar 

  • Smith, E.J., and K.J. Heffernan, 1954: Airborne measurements of the concentration of natural and artificial freezing nuclei. Quart. J. Roy. Meteor. Soc., 80, 182–197.

    Article  Google Scholar 

  • Smoluchowsky, M.V., 1918: Versuch einer mathematischen theorie der koagulationskinetic kolloidal lösunger. Z. Physik. Chem., Frankfort, 92, 129–168.

    Google Scholar 

  • Squires, P., 1952: The growth of cloud drops by condensation. Aust. J. Sci. Res., Ser. A. Phys. Sci., 5, 59–86.

    Google Scholar 

  • Squires, P., 1956: The microstructure of cumuli in maritime and continental air. Tellus, 8, 443–444.

    Article  Google Scholar 

  • Squires, P., and S. Twomey, 1960: The relation between cloud droplet spectra and the spectrum of cloud nuclei. Physics of Precipitation, Geophys. Monogr., No. 5, Amer. Geophys. Union, 211–219.

    Google Scholar 

  • Stefan, J., 1881: Theorie des psychrometers. Meteor. Z., Wien, 16, 180–182.

    Google Scholar 

  • Stickley, A.R., 1939: Selected Papers on the Physics of Condensation and Precipitation. U.S. Weather Bureau, 1–24.

    Google Scholar 

  • Stickley, A.R., 1940: An evaluation of the Bergeron–Findeisen precipitation theory. Mon. Wea. Rev., 68, 272–279.

    Article  Google Scholar 

  • Stokes, G.G., 1850: On the effect of the internal friction of fluids on the motion of pendulums Trans. Cambridge Philos. Soc., 9, 8–106. Reprint, 1966: Mathematical and Physical Papers of G.G. Stokes. Vol. 3. Sources of Science, No. 33, Johnson Reprint Corp., 1–141.

    Google Scholar 

  • Suring, R., 1940: Wolkenbildung, Wolkenstruktur und Niederschlag. Z. Geophys., Meteor., Geod., Berlin, 5, 1–10.

    Google Scholar 

  • Telford, J., 1955: A new aspect of coalescence theory. J. Meteor., 12, 436–444.

    Article  Google Scholar 

  • Tyndall, J., 1872: The Forms of Water, in Clouds and Rivers, Ice and Glaciers. Appleton, 196 pp.

    Google Scholar 

  • Vali, G., 1968: Ice nucleation relevant to the formation of hail. Stormy Weather Group Science Rep. MW-58, McGill University, 51 pp.

    Google Scholar 

  • Vali, G., 1985: Atmospheric ice nucleation—A review. J. Rech. Atmos., 19, 105–115.

    Google Scholar 

  • Vali, G., and E.J. Stansbury, 1966: Time-dependent characteristics of the heterogeneous nucleation of ice. Can. J. Phys. 44, 477–502.

    Article  Google Scholar 

  • Virgo, S.E., 1950: Tropical rainfall from cloud which did not extend to the freezing level. Meteor. Mag., 79, 237–238.

    Google Scholar 

  • Vollrath, R.E., 1936: Continuously active cloud chamber. Rev. Sci. Inst., 7, 409–410.

    Article  Google Scholar 

  • Volmer, M., 1939: Kinetik der Phasenbildung. Steinkoff, 283 pp.

    Google Scholar 

  • Wall, E., 1943: Die eiskeimbildung in losungskernen. Meteor. Z., 60, 94–104.

    Google Scholar 

  • Warner, J., 1955: The water content of cumuliform cloud. Tellus, 7, 449–457.

    Article  Google Scholar 

  • Warner, J., 1957: An instrument for the measurement of freezing nucleus concentrations. Bull. Obs. Puy de Dome 2, 33–46.

    Google Scholar 

  • Warner, J., 1973: The microstructure of cumulus cloud. Part V: changes in droplet size distribution with cloud age. J. Atmos. Sci., 30, 1724–1726.

    Article  Google Scholar 

  • Washburn, E.W., 1924: The vapor pressure of ice and water below the freezing point. Mon. Wea. Rev., 52, 488–490.

    Article  Google Scholar 

  • Wegener, A., 1910: Über die eisphase des wasserdampfes in der atmosphäre. Meteor. Z., 27, 451–459.

    Google Scholar 

  • Wegener, A., 1911: Thermodynamik der Atmosphäre. Leipzig, 331 pp.

    Google Scholar 

  • Weickmann, H. 1942: Experimetelle Utersuchungen zur Bildung von Eis und Wasser an Keimen bi tiefen Temperature. Forschung Bericht No. 1730, Zentral für Wissenschaftliche der Luftfahrtforschung, Berlin-Adlershof. Reprint, 1948: translated by V. Conrad, Air Materiel Command Tech. Rep. 5676.

    Google Scholar 

  • Weickmann, H. 1947: Die Eisphase in der Atmosphäre. Reports and Translations, Volkenrode, No. 716. Translation by M.G. Sutton. Ministry of Supply, Royal Aircraft Establishment, 95 pp.

    Google Scholar 

  • Weickmann, H. and H J aufm Kampe, 1953: Physical properties of clouds. J. Meteor., 10, 204–211.

    Article  Google Scholar 

  • Weisener, J., 1895: Beitrage zür kenntnis des tropischen regens. Sitzungsber. Akad. Wiss. Wien, 104, 1397–1434.

    Google Scholar 

  • Wexler, H., 1945: The structure of the September 1944 hurricane when off Cape Henry, Virginia. Bull. Amer. Meteor. Soc., 26, 156–159.

    Google Scholar 

  • Wexler, R., 1952: Precipitation growth in stratiform clouds. Quart. J. Roy. Meteor. Soc., 78, 363–371.

    Article  Google Scholar 

  • Young, K.C., 1993: Microphysical Processes in Clouds. Oxford, 421 pp.

    Google Scholar 

  • Zaytsev, V.A., 1950: Liquid water content and distribution of drops in umulus cloud (in Russian). Tr. Glay. Geofiz. Obs., 19, 122–132. Reprint, 1953: Translated by G. Belko, Tech. Trans. TT-395. National Research Council, 21 pp.

    Google Scholar 

Download references

Authors

Editor information

James Rodger Fleming

Rights and permissions

Reprints and permissions

Copyright information

© 1996 American Meteorological Society

About this chapter

Cite this chapter

Braham, R.R. (1996). Formation of Rain: A Historical Perspective. In: Fleming, J.R. (eds) Historical Essays on Meteorology 1919–1995. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-84-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-84-6_7

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-84-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics