Skip to main content

Diffusion in the Upper Atmosphere

  • Chapter
Compendium of Meteorology

Abstract

1. General Remarks. The kinetic theory of gases defines diffusion as the average motion of selected molecules relative to other molecules. The physical units of diffusion are number per square centimeter per second, that is, diffusion velocity times number of selected molecules per cubic centimeter. Diffusion depends on the composition of the gaseous mixture. A classical model considers two sets of molecules of different mass, effective diameter, and velocity distribution. The theory of diffusion results in complicated equations, even in the simple case of binary mixtures in a closed system when the physical state is well defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bagge, E., “Die Bedeutung der Ionendiffusion fur den Aufbau der Ionosphare.” Phys. Z., 44:163–167 (1943).

    Google Scholar 

  2. H. Bartels, J., “Uberblick iiber die Physik der hohen Atmosphare.” Elekt. Nachr.-Tech., Bd. 10 (Sonderheft), 40 SS. (1933).

    Google Scholar 

  3. Brandtner, E., “Der Staubfall in West Europa am 29. Marz 1947.” Meteor. Rdsch., 1:222–223 (1948).

    Google Scholar 

  4. Chapman, S., and Cowling, T. G., The Mathematical heory of Non-uniform Gases. Cambridge, University Press, 1939.

    Google Scholar 

  5. Chapman, S., and Milne, E. A., “The Composition, Ionisation and Viscosity of the Atmosphere at Great Heights.” Quart. J. R. meteor. Soc., 46:357–396 (1920).

    Article  Google Scholar 

  6. Defant, A., “Die Zirkulation der Atmosphare in den gemassigten Breiten der Erde.” Geogr. Ann., Stockh 3:209–265 (1921).

    Google Scholar 

  7. Doporto, M., and Morgan, W. A., “The Significance of the Isopycnic Level.” Quart. J. R. meteor. Soc., 73:384–390 (1947).

    Article  Google Scholar 

  8. Dutsch, H.-U., Photochemische Theoriedes atmospharischen Ozons unter Beriicksichtigung von Nichtgleichgewichts-zustanden und Lufibewegungen. Zurich, Leemann, 1946.

    Google Scholar 

  9. Epstein, P. S., “Uber Gasentmischung in der Atmos phare.” Beitr. Geophys., 35:153–165 (1932).

    Google Scholar 

  10. Ferraro, V. C. A., “Diffusion of Ions in the Ionosphere.” Terr. Magn. atmos. Elect., 50:215–222 (1945).

    Article  Google Scholar 

  11. Glueckauf, E., “Carbon Dioxide Content of Atmospheric Air.” Nature, 153:620–621 (1944).

    Article  Google Scholar 

  12. Gotz, F.W. P., “Die Atmosphare, Beschaffenheit, Schich-tung, Erstreckung,” Lehrbuch der Meteorologie J. v. Hann und R. Suring, Hsgbr., 5 Aufl. Leipzig, Keller, 1939. (See pp. 3–24)

    Google Scholar 

  13. Grimminger, G., “The Intensity of Lateral Mixing in the Atmosphere as Determined from Isentropic Charts.” Bull. Amer. meteor. Soc., 22:227–228 (1941).

    Google Scholar 

  14. Gutenberg, B., “Der Aufbau der Atmosphare,” Handbuchder Geophysik Bd. IX. Berlin, Gebr. Borntrager, 1932. (See pp. 1–89)

    Google Scholar 

  15. Handbook of Chemistry and Physics, 30th ed. Cleveland, Chemical Rubber Publ. Co., 1947.

    Google Scholar 

  16. Hann, J. v., “Die Zusammensetzung der Atmosphare.” Meteor Z., 20:122–126 (1903).

    Google Scholar 

  17. Haurwitz, B., “The Physical State of the Upper Atmos phere.” J. R. astr. Soc. Can., 30:315–330, 349–366, 397–415 (1936); 31:19–42, 76–92 (1937). Also reprinted with additions in monograph form by the University of Toronto Press, 1937.

    Google Scholar 

  18. Humphreys, W. J., Physics of the Air, 3rd ed. New York, McGraw, 1940.

    Google Scholar 

  19. Kiessling, J., Die Dammerungserscheinungen im Jahre1883 und ihre physikalische Erklarung. Hamburg und Leipzig, L. Voss, 1885, 1888.

    Google Scholar 

  20. Lettau, H., Atmospharische Turbulenz. Leipzig, Akad. Verlagsges., 1939; Ann Arbor, Michigan, J. W. Edwards, 1944.

    Google Scholar 

  21. Lettau, H., “Zur Theorie der partiellen Gasentmischung in der Atmosphare.” Meteor. Rdsch., 1:5–10, 65–74 (1947).

    Google Scholar 

  22. Lettau, H., “Isotropic and Non-isotropic Turbulence in the Atmospheric Surface Layer.” Geophys. Res. Pap. No. 1, Air Force Cambridge Res. Lab., Cambridge, Mass. (1949).

    Google Scholar 

  23. Lettau, H., A Theory of Eddy Diffusion. Unpublished manuscript, 1949.

    Google Scholar 

  24. Maris, H. B., “The Upper Atmosphere.” Terr. Magn. atmos. Elect., 33:233–255 (1928); 34:45–53 (1929).

    Article  Google Scholar 

  25. Miller, J. E., “Studies of Large Scale Vertical Motions of the Atmosphere.” Meteor. Pap. N. Y. Univ., Vol. 1, No. 1 (1948).

    Google Scholar 

  26. Mitra, S. K., The Upper Atmosphere. Calcutta, Royal Asiatic Society of Bengal, 1948.

    Google Scholar 

  27. Paneth, F. A., and Glueckauf, E., “The Helium Content of Atmospheric Air.” Proc. roy. Soc., (A) 185:89–98 (1946).

    Article  Google Scholar 

  28. Penndorf, R., “Die Zusammensetzung der Luft in der hohen Atmosphare.” Meteor. Z., 55:28–31 (1938).

    Google Scholar 

  29. Petersen, H., “On the Influence on the Composition of the Air of a Possible High Temperature in the Highest Strata.” Publ. danske meteor. Inst., No. 6 (1928).

    Google Scholar 

  30. Regener, E., “Oxygen Content of the Stratosphere.” Nature, 138:544 (1938).

    Article  Google Scholar 

  31. Regener, E., “Ozonschicht und atmospharische Turbulenz.” Meteor. Z., 60:253–269 (1943).

    Google Scholar 

  32. Richardson, L. F., and Stommel, H., “Note on Eddy Diffusion in the Sea.” J. Meteor., 5:238–240 (1948).

    Article  Google Scholar 

  33. Rossby, C.-G., and Collaborators, “Aerological Evi dence of Large-Scale Mixing in the Atmosphere.” Trans. Amer. geophys. Un., 18:130–136 (1937).

    Article  Google Scholar 

  34. Senftleben, H., und Gladisch, H., “Zur Frage der Ein-wirkung elektrischer Felder auf den Warmeubergang in Gasen.” Naturwissenschaften, 34:187–188 (1947).

    Article  Google Scholar 

  35. Spitzer, L., Jr., “The Terrestrial Atmosphere Above 300 Km” in The Atmospheres of the Earth and Planets, G. P. Kuiper, ed., pp. 213–249. Chicago, University of Chicago Press, 1949.

    Google Scholar 

  36. Stommel, H., Diffusion Due to Oceanic Turbulence. Woods Hole Oceanographic Institution, Tech. Rep. No. 17, Woods Hole, Mass. (1949).

    Google Scholar 

  37. Symons, G. J., and Collaborators, The Eruption of Krakatoa and Subsequent Phenomena. Krakatoa Committee, Royal Society. London, Triibner and Co., 1888.

    Google Scholar 

  38. Warfield, C. N., “Tentative Tables for the Properties of the Upper Atmosphere Tech. Notes nat. adv. Comm. Aero., Wash., No. 1200 (1947).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas F. Malone

Rights and permissions

Reprints and permissions

Copyright information

© 1951 American Meteorological Society

About this chapter

Cite this chapter

Lettau, H. (1951). Diffusion in the Upper Atmosphere. In: Malone, T.F. (eds) Compendium of Meteorology. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-70-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-70-9_27

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-70-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics