Skip to main content

Capture of Radiant Energy by Plants

  • Chapter
Agricultural Meteorology

Part of the book series: Meteorological Monographs ((METEOR,volume 6))

Abstract

Meteorology and biology share a common source of energy. The energy creating climate and nourishing life arrives as solar radiation. Green plants, of course, are the initial link in the energy chain for nearly all organisms. Plants use directly only a small but important segment of the spectrum—the visible wavelengths. This energy becomes chemically bound, and the net storage is measured as yield of dry matter. Thus, visible radiation is of particular importance to the botanist. The total radiant energy balance, however, determines much of the environment, and hence, whether the chain of processes that fix visible radiation will function well or poorly. Yields of forest, fern or farm crop are, therefore, twice linked to solar radiation, first by the requirement of visible radiation for photosynthesis and, secondly, by the effect radiation has on other factors of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikman, J. M., 1931: The microclimate of Zea Mays in central Iowa. Iowa Acad. Sci. Proc., 38, 73–83.

    Google Scholar 

  • Ashton, F. M., 1956: Effects of a series of cycles of alternating low and high water contents on the rate of apparent photosynthesis in sugar cane. Plant Physiol., 31, 266–274.

    Article  Google Scholar 

  • Black, J. N. 1958: Competition between plants of different initial seed sizes in swards of subterranean clover (Trifolium subterraneum L.) with particular reference to leaf area and the light microclimate. Austral. J. Agr. Res., 9, 299–318.

    Article  Google Scholar 

  • Black, J. N., 1960: The significance of petiole length, leaf area, and light interception in competition between strains of subterranean clover (Trifolium subterraneum L.) grown in swards. Austral. J. Agr. Res., 11, 277–291.

    Article  Google Scholar 

  • Blackman, G. E., 1961: Responses to environmental factors by plants in the vegetative phase. Growth in Living Systems, New York, Basic Books, 525–556.

    Google Scholar 

  • Blackman, G. E., and J. N. Black, 1959: Physiological and ecological studies in the analysis of plant environment. XI. A further assessment of the influence of shading on the growth of different species in the vegetative phase. Ann. Bot., N.S., 23, 51–63.

    Google Scholar 

  • Blackman, G. E., J. N. Black, and A. W. Kemp, 1955: Physiological and ecological studies in the analysis of plant environment. X. An analysis of the effects of seasonal variation in daylight and temperature on the growth of Helianthus annus in the vegetative phase. Ann. Bot., N.S., 19, 527–548.

    Google Scholar 

  • Blackman, G. E., and G. L. Wilson, 195la: Physiological and ecological studies in the analysis of plant environment. VI. The constancy for different species of a logarithmic relationship between net assimilation rate and light intensity and its ecological significance. Ann. Bot., N.S., 15: 63–94.

    Google Scholar 

  • Blackman, G. E., and G. L. Wilson, 1951b: Physiological and ecological studies in the analysis of plant environment. VII. An analysis of the differential effects of light intensity on the net assimilation rate, leaf-area ratio, and relative growth rate of different species. Ann. Bot., N.S., 15: 373–408.

    Google Scholar 

  • Blackman, V. H., 1919: The compound interest law and plant growth. Ann. Bot., 33, 353–360.

    Google Scholar 

  • Bohning, R. H., and C. A. Burnside, 1956: The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants. Amer. J. Bot., 43, 557–561.

    Article  Google Scholar 

  • Bosian, G., 1955: Ãœber die Vollautomatisierung der Assimilationsbestimmung und zur Methodik von Küvettenklimas. Planta, 45, 470–492.

    Article  Google Scholar 

  • Boysen-Jensen, P., 1918: Studies on the production of matter in light and shadow plants. Baton. Tidskr., 36, 219–262.

    Google Scholar 

  • Briggs, G. E., F. Kidd and C. West, 1920a: A quantitative analysis of plant growth. Part I. Ann. Appl. Biol., 7, 103–123.

    Article  Google Scholar 

  • Briggs, G. E., F. Kidd and C. West, 1920b: A quantitative analysis of plant growth. Part II. Ann. Appi. Biol., 7, 202–223.

    Article  Google Scholar 

  • Brougham, R. W., 1960: The relationship between the critical leaf area, total chlorophyll content, and maximum growth-rate of some pasture and crop plants. Ann. Bot., N.S., 24, 463–474.

    Google Scholar 

  • Brown, H. T., and F. Escombe, 1902: The influence of varying amounts of carbon dioxide in the air on the photosynthetic process of plants. Roy. Soc. London Proc., B70, 397–413.

    Article  Google Scholar 

  • Brown, H. T., and F. Escombe, 1905: Researches on some of the physiological processes of green leaves with special reference to the interchange of energy between the leaf and its surroundings. Roy. Soc. London Proc., B76, 29–112.

    Article  Google Scholar 

  • Buck, S. F., 1961: The use of rainfall, temperature, and actual transpiration in some crop-weather investigations. J. Agr. Sci., 57, 355–365.

    Article  Google Scholar 

  • Chapman, H. W., 1951: Absorption of carbon dioxide by leaves of potato. Amer. Potato J., 28, 602–614.

    Article  Google Scholar 

  • Chapman, H. W., and W. E. Loomis, 1953: Photosynthesis in the potato under field conditions. Plant Physiol., 28, 703–716.

    Article  Google Scholar 

  • Cressman, R., 1957: Time course of photosynthesis. Ohio State University, Ph.D. thesis.

    Google Scholar 

  • Decker, J. P., 1947: The effect of air supply on apparent photosynthesis. Plant Physiol., 22, 561–571.

    Article  Google Scholar 

  • Decker, J. P., 1954: The effect of light intensity on photosynthesis rate in Scotch Pine. Plant Physiol., 29, 305–306.

    Article  Google Scholar 

  • Deneke, H., 1931: Ãœber den Einfluss bewegter Luft auf die Kohlensäureassimilation. Jb. wiss. Bot., 74, 1–32.

    Google Scholar 

  • Eisele, H. F., 1938: Influence of environmental factors on the growth of the corn plant under field conditions. Iowa Agr. Exp. Sta. Res. Bul., 229, 1–31.

    Google Scholar 

  • Emerson, R., 1929: Photosynthesis as a function of light intensity and of temperature with different concentrations of chlorophyll. J. Gen. Physiol., 12, 623–639.

    Article  Google Scholar 

  • Fisher, R. A., 1924: The influence of rainfall on the yield of wheat at Rothamsted. Phil. Trans. Roy. Soc. London, B213, 89–412.

    Article  Google Scholar 

  • Gaastra, P., 1959: Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Mededel. Landbouwhogeschool Wageningen 59, 1–68.

    Google Scholar 

  • Gabrielsen, E. K., 1940: Einfluss der Lichtfaktoren auf die Kohlensäure-Assimilation der Laubblätter. Dansk. Bot. Arkive, 10, 1–177.

    Google Scholar 

  • Goodall, D. W., 1945: Distribution of weight changes in the young tomato plant. I. Dry weight changes in the various organs. Ann. Bot., N.S., 9, 101–139.

    Google Scholar 

  • Goodall, D. W., 1950: Growth analysis of cacao seedlings. Ann. Bot., N.S., 14, 291–306.

    Google Scholar 

  • Gregory, F. G., 1917: Physiological conditions in cucumber houses. Third Ann. Rep. Exp. and Res. Sta., Chesnut, pp. 19–28.

    Google Scholar 

  • Gregory, F. G., 1926: The effect of climatic conditions on the growth of barley. Ann. Bot., 40, 1–26.

    Google Scholar 

  • Heath, O. V. S., 1937: The effect of age on net assimilation and relative growth rates in the cotton plant. Ann. Bot., N.S., 1, 565–566.

    Google Scholar 

  • Heath, O. V. S., 1948: Control of stomatal movement by a reduction in the normal carbon dioxide content of the air. Nature, 161, 179–181.

    Article  Google Scholar 

  • Heinicke, A. J., 1933: A special air chamber for studying photosynthesis under natural conditions. Science, 77, 516–517.

    Article  Google Scholar 

  • Heinicke, A. J., and N. F. Childers. 1937: The daily rate of photosynthesis, during the growing season of 1935, of a young apple tree of bearing age. Cornell Univ. Agr. Exp. Sta. Memoir, 201, 1–52.

    Google Scholar 

  • Heinicke, A. J., and M. B. Hoffmann, 1933: The rate of photosynthesis of apple leaves under natural conditions. Cornell Univ. Agr. Exp. Sta. Bull., 577, 1–32.

    Google Scholar 

  • Hesketh, J. D., 1963: Limitations to photosynthesis responsible for differences among species. Crop. Sci., 3, 493–496.

    Article  Google Scholar 

  • Hesketh, J. D., and D. N. Moss, 1963: Variation in the response of photosynthesis to light. Crop. Sci., 3, 107–110.

    Article  Google Scholar 

  • Hesketh, J. D., and R. B. Musgrave, 1962: Photosynthesis under field conditions IV. Light studies with individual corn leaves. Crop Sci., 2, 311–315.

    Article  Google Scholar 

  • Huber, B., 1952: Die Schwankungen des CO2-Gehaltes der Atmosphäre. Archiv. Meteor., Geophys. Bioklim., 4, 154–167.

    Article  Google Scholar 

  • Inoue, E., 1957: An aerodynamic measurement of photosynthesis over a paddy field. Proc. 7th Japan Nat. Cong. for Applied Mechanics, 211–214.

    Google Scholar 

  • Keller, K. R., 1942: Evaluation of some morphological characters of corn in respect to their use in forecasting yield. Jour. Amer. Soc. Agron., 34, 940–953.

    Article  Google Scholar 

  • Kiesselbach, T. A., 1950: Progressive development and seasonal variations of the corn crop. Nebraska Agr. Exp. Sta. Res. Bull., 166, 1–49.

    Google Scholar 

  • Kimball, H. H., 1924: Records of total solar radiation intensity and their relation to daylight intensity. Mon. Wea. Rev., 52, 473–479.

    Article  Google Scholar 

  • Kostychev, S., K. Bazyrina and W. Tschesnokov, 1928: Untersuchungen über die Photosynthese der Laubblätern unter natürlichen Verhältnisse. Planta, 5, 696–724.

    Article  Google Scholar 

  • Kramer, P. J., and J. P. Decker, 1944: Relation between light intensity and rate of photosynthesis of Loblolly pine and certain hardwoods. Plant Physiol., 19, 350–358.

    Article  Google Scholar 

  • Kreusler, U., 1885: Ueber eine Methode zur Beobachtung der Assimilation und Athmung der Pflanzen und über einige diese Vorgänge beeinflüssende Momente. Landw. Jahrb., 14, 913–965.

    Google Scholar 

  • Lemon, E. R., 1960: Photosynthesis under field conditions. II. An aerodynamic method for determining the turbulent carbon dioxide exchange between the atmosphere and a corn field. Agron. J., 52, 697–703.

    Article  Google Scholar 

  • Lemon, E. R., 1963: Energy and water balance of plant communities. Environmental Control of Plant Growth, New York, Academic Press, 55–78.

    Google Scholar 

  • McAlister, E. D., 1937: Time course of photosynthesis for a higher plant. Smithsonian Misc. Coll., 95, 1–17.

    Google Scholar 

  • Monteith, J. L., 1962: Measurement and interpretation of carbon dioxide fluxes in the field. Neth. J. Agric. Sci., 10, 334–346.

    Google Scholar 

  • Moss, D. N., 1959: Photosynthesis of corn under field conditions. Cornell Univ., Ph.D. Thesis, 1–131.

    Google Scholar 

  • Moss, D. N., 1962a: The limiting carbon dioxide concentration for photosynthesis. Nature, 193, 587.

    Article  Google Scholar 

  • Moss, D. N., 1962b: Photosynthesis and barrenness. Crop Sci., 2, 366–367.

    Article  Google Scholar 

  • Moss, D. N., 1963: The effect of environment on the gas exchange of leaves. Conn. Agr. Exp. Sta. Bull., 664, 86–101.

    Google Scholar 

  • Moss, D. N., 1964: Optimum lighting of leaves. Crop Sci., 4, 131–136.

    Article  Google Scholar 

  • Moss, D. N., R. B. Musgrave and E. R. Lemon, 1961. Photosynthesis under field conditions. III. Some effects of light, carbon dioxide, temperature, and soil moisture on photosynthesis, respiration, and transpiration of corn. Crop Science, 1, 83–87.

    Article  Google Scholar 

  • Moss, D. N., and S. L. Rawlins, 1963: Concentration of carbon dioxide inside leaves. Nature, 197, 1320–1321.

    Article  Google Scholar 

  • Moss, D. N., and H. T. Stinson, 1961: Differential response of corn hybrids to shade. Crop Sci., 1, 416–418.

    Article  Google Scholar 

  • Muller, D., 1938: Die Kohlensäureassimilation bei arktischen Pflanzen und die Abhängigkeit der Assimilation von der Temperatur. Planta, 6, 22–39.

    Article  Google Scholar 

  • Nichiporovich, A. A., and L. E. Strogonova, 1957: Photosynthesis and problems of crop yield. Agrochemica, 2, 26–53.

    Google Scholar 

  • Rabinowitch, E. I., 1951: Photosynthesis and Related Processes. II. ( 1 ) New York, Interscience Publ., Inc.

    Google Scholar 

  • Rawlins, S. L., 1963: Resistance to water flow in the transpiration stream. Conn. Agr. Exp. Sta. Bull., 664, 69–85.

    Google Scholar 

  • Schmidt, W., 1925: Der Massenaustausch in freier Luft und verwandte Erscheinungen. Probl. d. kosm. Physik 7 ( Hamburg, H. Grand ).

    Google Scholar 

  • Shaw, R. W., and W. E. Loomis, 1950: Bases for the prediction of corn yields. Plant Physiol., 25, 225–244.

    Article  Google Scholar 

  • Shimizu, T., and Y. Tsuno, 1957: Studies on yield forecasts, photosynthesis of wheat and naked barley under field conditions. Crop Sci. Soc. Japan Proc., 26, 100–102.

    Article  Google Scholar 

  • Stalfelt, M. G., 1940: Licht und Temperturhummung in der Kohlensäuressimilation. Planta, 24, 402–445.

    Google Scholar 

  • Stern, W. R., and C. M. Donald, 1962a: Light relationships in grass-clover swards. Austral. J. Agr. Res., 13, 599–614.

    Article  Google Scholar 

  • Stern, W. R., and C. M. Donald, 1962b: The influence of leaf area and radiation on the growth of clover in swards. Austral. J. Agr. Res., 13, 615–623.

    Article  Google Scholar 

  • Thomas, M. D., 1933: Precise automatic apparatus for continuous determination of carbon dioxide in air. Ind. and Eng. Chem. Anal. Ed., 5, 193–198.

    Article  Google Scholar 

  • Thomas, M. D., R. H. Hendricks, J. O. Ivie and G. R. Hill. 1943: An installation of large sand-culture beds surmounted by individual air-conditioned greenhouses. Plant Physiol., 18, 334–344.

    Article  Google Scholar 

  • Thomas, M. D., and G. R. Hill, 1937: The continuous measurement of photosynthesis, respiration, and transpiration of alfalfa. and wheat growing under field conditions. Plant Physiol., 12, 285–307.

    Article  Google Scholar 

  • Thomas, M. D., and G. R. Hill, 1949: Photosynthesis under field conditions. Photosynthesis in Plants, Iowa State College Press, 19–52.

    Google Scholar 

  • Thorne, G. N., 1960: Variations with age in net assimilation rate and other growth attributes of sugar-beet, potato, and barley in a controlled environment. Ann. Bot., N.S., 24, 356–371.

    Google Scholar 

  • Thorne, G. N., 1961: Effects of age and environment on net assimilation rate of barley. Ann. Bot., N.S., 25, 29–38.

    Google Scholar 

  • Thut, H. F., and W. E. Loomis, 1944: The relation of light to growth of plants. Plant Physiol., 19, 117–130.

    Article  Google Scholar 

  • Wadsworth, R. M., 1959: On optimum wind speed for plant growth. Ann. Bot. N.S., 23, 195–199.

    Google Scholar 

  • Wadsworth, R. M., 1960: The effect of artificial wind on the growth-rate of plants in water culture. Ann. Bot., N.S., 24, 200–211.

    Google Scholar 

  • Waggoner, P. E., D. N. Moss and J. D. Hesketh, 1963: Radiation in the plant environment and photosynthesis. Agron J., 55, 36–39.

    Article  Google Scholar 

  • Watson, D. J., 1937: The estimation of leaf area in field crops. J. Agr. Sci., 27, 474–483.

    Article  Google Scholar 

  • Watson, D. J., 1947a: Comparative physiological studies on the growth of field crops. I. Variation in net assimilation rates and leaf area between species and varieties, and within and between years. Ann. Bot., N.S., 11, 41–76.

    Google Scholar 

  • Watson, D. J., 1947b: Comparative physiological studies on the growth of field crops. II. The effect of varying nutrient supply on net assimilation rate and leaf area. Ann. Bot., N.S., 11, 375–407.

    Google Scholar 

  • Watson, D. J., 1952: The physiological basis of variations in yields. Advances in Agronomy, 4, 101–145.

    Article  Google Scholar 

  • Watson, D. J., 1958: The dependence of net assimilation rate on leaf area index. Ann. Bot., N.S., 22, 37–54.

    Google Scholar 

  • Watson, D. J., 1963: Climate,. weather, and plant yield. Environmental Control of Plant Growth, New York, Academic Press, 337–350.

    Google Scholar 

  • Watson, D. J., G. N. Thorne and S. A. W. French, 1958: Physiological causes of differences in grain yield between varieties of barley. Ann. Bot., N.S., 22, 321–352.

    Google Scholar 

  • Watson, D. J., G. N. Thorne and S. A. W. French, 1963: Analysis of growth and yield of winter and spring wheats. Ann. Bot., N.S., 27, 1–23.

    Google Scholar 

  • Watson, D. J., and K. J. Witts, 1959: The net assimilation rates of wild and cultivated beets. Ann. Bot., N.S., 23, 431–439.

    Article  Google Scholar 

  • Waugh, J. G., 1939 Some investigations on the assimilation of apple leaves. Plant Physiol., 14, 463–477.

    Article  Google Scholar 

  • Went, F. W., 1957: The experimental control of plant growth. Chronica Botanica, 17, Waltham, Mass.

    Google Scholar 

  • Williams, J. W., and R. M. Wadsworth, 1958: The effect of wind speed on assimilation rate—a reassessment. Ann. Bot., N.S., 22, 285–290.

    Google Scholar 

  • Williams, R. F., 1937: Drift of net assimilation rate in plants. Nature, 140, 1099.

    Article  Google Scholar 

  • Williams, R. F., 1946: The physiology of plant growth with special reference to the concept of net assimilation rate. Ann. Bot., N.S., 10, 41–72.

    Google Scholar 

  • Williams, W. A., 1963: Competition for light between annual species of Trifolium during the vegative phase. Ecology, 44, 475–485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1965 American Meteorological Society

About this chapter

Cite this chapter

Moss, D.N. (1965). Capture of Radiant Energy by Plants. In: Agricultural Meteorology. Meteorological Monographs, vol 6. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-58-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-58-7_5

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-58-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics