Advertisement

Some Facts and Speculations Concerning the Origin and Role of Thunderstorm Electricity

  • Bernard Vonnegut
Part of the Meteorological Monographs book series (METEOR, volume 5)

Abstract

This discussion of the mysteries of thunderstorm electricity differs somewhat from most treatments of the subject. Usually it is assumed at the outset that the falling of charged precipitation particles is the cause of the electrification process. It follows, when this assumption is made, that the accumulation of charge is one of the last things to happen in the development of the cloud, and accordingly little importance is attached to the possible influence of electrical forces in determining the cloud’s behavior. Since this writing considers the possibility that electrification might take place early in the cloud’s development as the result of convection, somewhat greater attention than is customary is devoted to possible effects of electrification on the formation of precipitation and on the movement of air within the cloud.

Keywords

Point Discharge Electrical Force Cloud Droplet Conduction Current Electrification Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agayan, L., 1960: Laboratory in the Caucasus Mountain. Prom. Ekon. Gaz., March 6, p. 4. (In Rept. No. PB131632–115, Information on Soviet Bloc. International Geophysical Coöperation—1960, April 22, p. 18.)Google Scholar
  2. Blanchard, Duncan C., 1961: Atmospheric electricity and the oceans. Oceanus, 7, No. 4.Google Scholar
  3. Braham, R. R., Jr., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227–242.CrossRefGoogle Scholar
  4. Brook, M., 1959: Laboratory studies of charge separation during ice-ice contact. Recent advances in atmospheric electricity, New York, Pergamon Press, 383–389.Google Scholar
  5. Browning, K. A., and B. J. Mason, 1962: Production of ice crystals and electric charge by splintering of freezing droplets in thunderclouds. Quart. J. R. meteor. Soc., 89, 139–144.CrossRefGoogle Scholar
  6. Chalmers, J. A., 1943: The separation of electricity in clouds. Phil. Mag., 34, 63–67.CrossRefGoogle Scholar
  7. Chalmers, J. A., 1954: Atmospheric electricity. Rep. Prog. Phys., 17, 101–134.CrossRefGoogle Scholar
  8. Chalmers, J. A., 1957: Atmospheric electricity. London, Pergamon Press, 327 pp.Google Scholar
  9. Chalmers, J. A., 1958: Modern theories of thunderstorm electrification. Geophysica Pura e Applicata (Milano), 41, 189–193.CrossRefGoogle Scholar
  10. Chalmers, J. A., 1961: Thunderstorm theories. Bull. Inst. Phys. and phys. Soc. (London), 78, 237–239.Google Scholar
  11. Chalmers, J. A., 1961: A criterion for thunderstorm theories. J. atmos. and terr. Phys. 21, 174–176.CrossRefGoogle Scholar
  12. Dinger, J. E., and R. Gunn, 1946: Electrical effects associated with a change of state of water. Terr. Magn. atmos. Elect., 51, 477–495.CrossRefGoogle Scholar
  13. Elster, J., and H. Geitel, 1885: Uber die Elektrizitätsentwicklung bei der Regenbildung. Ann. Phys. Chem., 25, 121–131.CrossRefGoogle Scholar
  14. Engelbrecht, H. H., and G. N. Brancato, 1959: World record one minute rainfall at Unionville, Md. Mon. Wea. Rev., 87, 303–306.CrossRefGoogle Scholar
  15. Evans, G. R., and A. A. Watson, 1962: Production of hyper-sensitive condensation nuclei. Nature, 196, 729–730.CrossRefGoogle Scholar
  16. Findeisen, W., 1940: Über die Entstehung der Gewitterelek-trizität. Z. Meteor., 57, 201–215.Google Scholar
  17. Findeisen, W., and E. Findeisen, 1943: Untersuchen uber die Eissplitter-bildung an Rief-Schichten. Z. Meteor., 60, 145–154.Google Scholar
  18. Flora, S. D., 1956: Hailstorms of the United States. Norman, Oklahoma, University of Oklahoma Press, 201 pp.Google Scholar
  19. Foster, H., 1950: An unusual observation of lightning. Bull. Amer. meteor. Soc., 31, 140–141.Google Scholar
  20. Freier, G., 1962: Conductivity of the air in thunderstorms. J. geophys. Res., 67, 4683–4691.CrossRefGoogle Scholar
  21. Gish, O. H., 1951: Universal aspects of atmospheric electricity. Compendium of meteorology, Boston, Amer. Meteor. Soc., 101–119.Google Scholar
  22. Gish, O. H., and G. R. Wait, 1950: Thunderstorms and the earth’s general electrification. J. geophys. Res., 55, 473–484.CrossRefGoogle Scholar
  23. Grenet, G., 1947: Essai d’explication de la charge electrique des nuages d’orages. Annales de geophysique, 3, 306–307.Google Scholar
  24. Guest, P. G., 1939: Static electricity in nature and industry. U. S. Bureau of Mines, Bull. No. 308, Washington, D. C., 98 pp.Google Scholar
  25. Gunn, R., 1935: The electricity of rain and thunderstorms. Terr. Magn. atmos. Elect., 40, 79–106.CrossRefGoogle Scholar
  26. Gunn, R., 1947: The free electrical charge on precipitation at various altitudes and its relation to thunderstorms. Phys. Rev., 71, 181–186.CrossRefGoogle Scholar
  27. Gunn, R., 1948: Electric field intensity inside of natural clouds. J. appl. Phys., 19, 481–484.CrossRefGoogle Scholar
  28. Gunn, R., 1950: Free electrical charge on precipitation inside an active thunderstorm. J. geophys. Res., 55, 171–178.CrossRefGoogle Scholar
  29. Gunn, R., 1954a: Diffusion charging of atmospheric droplets of ions and the resulting combination coefficients. J. Meteor., 11, 339–347.CrossRefGoogle Scholar
  30. Gunn, R., 1954b: Electrical conductivity in clouds. Bull. Amer. meteor. Soc., 35, p. 84.Google Scholar
  31. Gunn, R., 1955a: The systematic electrification of precipitation by ionic diffusion. Proc. Conf. on Atmos. Elec., AFCRC–TR-55222, Bedford, GRD, AFCRC, 232–236.Google Scholar
  32. Gunn, R., 1955b: Raindrop electrification by the association of randomly charged cloud droplets. J. Meteor., 12, 562–568.CrossRefGoogle Scholar
  33. Gunn, R., 1956: Initial electrification process in thunderstorms. J. Meteor., 13, 21–29.CrossRefGoogle Scholar
  34. Gunn, R., 1956: The hyperelectrification of raindrops by atmospheric electric fields. J. Meteor., 13, 283–288.CrossRefGoogle Scholar
  35. Gunn, R., 1957: The electrification of precipitation and thunder-storms. Proc. Inst. Radio Engr., 45, 1331–1358.Google Scholar
  36. Holzer, R. E.. and D. S. Saxon, 1952: Distribution of electrical conduction currents in the vicinity of thunderstorms. J. geophys. Res., 57, 207–216.CrossRefGoogle Scholar
  37. Humphreys, W. J., 1940: Physics of the air. 3rd ed., New York, McGraw Hill Book Co., 676 pp.Google Scholar
  38. Kinzer, G. D., and W. E. Cobb, 1956: Laboratory measurements of the growth and collection efficiency of raindrops. J. Meteor., 13, 295–301.CrossRefGoogle Scholar
  39. Konow, R. V., 1960: The thunderstorm as a chemical phenomenon. J. Franklin Inst., 269, 439–444.CrossRefGoogle Scholar
  40. Kramer, C., 1949: Elektrische ladingen aan berijpte opperflakken. Meded. Ned. Meteor. Inst. 54A, 102.Google Scholar
  41. Kuettner, J., 1950: The electrical and meteorological conditions inside thunderstorms. J. Meteor., 7, 322–332.CrossRefGoogle Scholar
  42. Kuettner, J., and R. Lavoie, 1958: Studies of charge generation during riming in natural supercooled clouds. Recent advances in atmospheric electricity, New York, Pergamon Press, 391–397.Google Scholar
  43. Kumm, A., 1951: Über die Entstehung von elektrischen Ladungen bei Vorgangen in der kristallinien Eisphase. Arch. Meteor., (Wien), A, 3, 382–407.Google Scholar
  44. Ladenburg, R., 1930: Untersuchen uber die physikalischen Vorgänge bei der sogenannter elektrischen gas Reinigung. Ann. Physik, 4, 863–897.CrossRefGoogle Scholar
  45. Langmuir, I., 1948: Production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J. Meteor. 5, 175–192.CrossRefGoogle Scholar
  46. Latham, J., and B. J. Mason, 1961a: Electric charge transfer associated with temperature gradients in ice. Proc. Roy. Soc., 260, 523–536.CrossRefGoogle Scholar
  47. Latham, J., and B. J. Mason, 1961b: Generation of electric charge associated with the formation of soft hail in thunder clouds. Proc. Roy. Soc. A., 260, 537–549.CrossRefGoogle Scholar
  48. Lucretius, T., 58 B.C. (1957): Great meteorological phenomena, De rerum natura. Book VI, New York, E. P. Dutton and Co., 255–261.Google Scholar
  49. Lueder, H., 1951: Vergraupelungselektrisierung als eine Ursche der Gewitterelektrizistät. Z. angew. Phys., 3, 247–288.Google Scholar
  50. Malkus, W. V. R., and Veronis, G., 1961: Surface electroconvection: The Physics of Fluids, 4, No. 1, 13–23.CrossRefGoogle Scholar
  51. Marshall, J. S., and K. L. S. Gunn, 1957: A first experiment on snow crystal growth. Artificial stimulation of rain, New York, Pergamon Press, 340–346.Google Scholar
  52. Mason, B. J., 1953a: A critical examination of theories of charge generation in thunderstorms. Tellus, 5, 446–460.CrossRefGoogle Scholar
  53. Mason, B. J., 1953b: On the generation of charge associated with graupel formation in thunderstorms. Quart. J. R. meteor. Soc., 79, 501–509.CrossRefGoogle Scholar
  54. Mason, B. J., 1961: Inaugural lecture. Imperial College of Science and Technology, University of London, 74–78.Google Scholar
  55. Mason, B. J., and J. Maybank, 1960a: The fragmentation and electrification of freezing water drops. Quart. J. R. meteor. Soc., 86, 176–186.CrossRefGoogle Scholar
  56. Meinhold, H., 1951: Die elektrische Ladung eines Flugzeuges bei Vereisung in Quellwolken. Geofis. pur. appl., 19, 176–178.CrossRefGoogle Scholar
  57. Moore, C. B., and B. Vonnegut, 1960: Estimates of raindrop collection efficiencies in electrified clouds. Physics of precipitation, Geophys. Monogr. No. 5, Washington, D. C., Amer. Geophys. Union, 291–304.Google Scholar
  58. Moore, C. B., B. Vonnegut and A. T. Botka, 1958: Results of an experiment to determine initial precedence of organized electrification and precipitation in thunderstorms. Recent advances in atmospheric electricity. New York, Pergamon Press, 333–359.Google Scholar
  59. Moore, C. B., B. Vonnegut, J. A. Machado and H. J. Survilas, 1962: Radar observations of rain gushes following overhead lightning strokes. J. geophys. Res., 67, 1, 207–220.CrossRefGoogle Scholar
  60. Moore, C. B., B. Vonnegut, B. A. Stein and H. J. Survilas, 1960: Observations of electrification and lightning in warm clouds. J. geophys. Res., 65, 1907–1910.CrossRefGoogle Scholar
  61. Muchnik, V. M., 1954: Chain process of charge accumulation in thunder clouds. Doklady Akademi Nauk. (USSR), 99, 537–538 (In Russian).Google Scholar
  62. Müller-Hillebrand, D., 1954: Charge generation in thunderstorms by collisions of ice crystals with graupel falling through a vertical field. Tellus, 6, 367–381.CrossRefGoogle Scholar
  63. Pauthenier, M., 1948: Sur la coalescence electrique des brouillards et eventuellment des nuages a temperature quelconque au moyen d’aerosols electrises. Academie des Sciences, Paris, Comptes Rendus, 266, 587–589.Google Scholar
  64. Pauthenier, M., 1950: Electrical coalescence of fogs and clouds. Centenary Proceedings, R. meteor. Soc., 60–61.Google Scholar
  65. Pietrowski, E. L., 1960: An observation of lightning in warm clouds. J. Meteor., 17, 562–563.CrossRefGoogle Scholar
  66. Pühringer, A., 1961: Die electromagnetische Induction als Grundlage einer Gewittertheorie. Archiv Meteor., Geophys. Bioklim., A, 12, 262–269.CrossRefGoogle Scholar
  67. Ramsay, M. W., and J. A. Chalmers, 1960: Measurements of the electricity of precipitation. Quart. J. R. meteor. Soc., 86, 530–539.CrossRefGoogle Scholar
  68. Rau, W., 1951: Eiskeimbildung durch dielektrische Polarisation. Z. Naturfor., 6, 649–657.Google Scholar
  69. Rayleigh, Lord, 1879: The influence of electricity on colliding water droplets. Proc. Roy. Soc., 28, 406–409.Google Scholar
  70. Reynolds, S. E., 1954: Compendium of thunderstorm electricity. Cont. No. DA 36–039–SC-42647, Socorro, New Mexico Inst. Mining and Tech., 100 pp.Google Scholar
  71. Reynolds, S. E., and H. Brook, 1956: Correlation of the initial electric field and the radar echo in thunderstorms. J. Meteor., 13, 376–380.CrossRefGoogle Scholar
  72. Reynolds, S. E., and M. F. Gourley, 1957: Thunderstorm charge separation. J. Meteor., 14, 426–436.CrossRefGoogle Scholar
  73. Rossmann, F., 1948: Vom Ursprung der Gewitterelektrizität. Meteor. Rundsch. 1, 193–195.Google Scholar
  74. Sartor, J. D., 1954: A laboratory investigation of collision efficiencies, coalescence and electrical charging of simulated cloud droplets. J. Meteor., 11, 91–103.CrossRefGoogle Scholar
  75. Sartor, J. D., 1960: Some electrostatic droplet collision efficiencies. J. geophys. Res., 65, 1953–1957.CrossRefGoogle Scholar
  76. Sartor, J. D., 1961: Calculations of cloud electrification based on a general charge-separation mechanism. J. geophys. Res., 66, 831–838.CrossRefGoogle Scholar
  77. Schaefer, V. J., 1950: A confirmation of the Workman-Reynolds effect. Phys. Rev., 78, 721.CrossRefGoogle Scholar
  78. Schaefer, V. J., 1951: Snow and experimental meteorology. Compendium of meteorology, Boston, American Meteorological Society, 227–234.Google Scholar
  79. Schaefer, V. J., 1953: Final report Project Cirrus, Part I. General Electric Report RL-785. Contract No. DA-36–039–SC-15345, 170 pp.Google Scholar
  80. Schonland, B. F. J., 1953: Atmospheric electricity. London, Methuen & Company, 95 pp.Google Scholar
  81. Schonland, B. F. J., 1950: The flight of thunderbolts. Oxford, Clarendon Press, 236 pp.Google Scholar
  82. Simpson, G. C., 1909: On the electricity of rain and its origin in thunderstorms. Phil. Trans. R. Soc. A, 209, 379–413.CrossRefGoogle Scholar
  83. Simpson, G. C., and F. J. Scrase, 1937: The distribution of electricity in thunder clouds. Proc. R. Soc. A, 161, 309–353.CrossRefGoogle Scholar
  84. Simpson, G. C., and G. D. Robinson, 1940: The distribution of electricity in thunder clouds. II. Proc. R. Soc. A, 177, p. 281 and 329.CrossRefGoogle Scholar
  85. Smith, L. G., 1955: The electric charge on raindrops. Quart. J. R. meteor. Soc., 81, 23–47.CrossRefGoogle Scholar
  86. Steiner, Roy, and R. H. Rhyne, 1962: Some measured characteristics of severe storm turbulence, Nat. Severe Storms Proj. Rep. No. 10, Washington, D. C., U. S. Wea. Bur., 17 pp.Google Scholar
  87. Thomson, J. J., 1898: On the charge of electricity carried by the ions produced by Röntgen rays. Phil. Mag., 46, 528–545.CrossRefGoogle Scholar
  88. Vonnegut, B., 1955: Possible mechanism for the formation of thunderstorm electricity. Proc. on the Conference on Atmospheric Electricity, Geophys. Res. Pap. No. 42, Bedford, GRD, AFCRL, 169–181.Google Scholar
  89. Vonnegut, B., 1960: Electrical theory of tornadoes. J. geophys. Res., 65, 203–212.CrossRefGoogle Scholar
  90. Vonnegut, B., and C. B. Moore, 1959: Giant electrical storms. Recent advances in atmospheric electricity, New York, Pergamon Press, 399–411.Google Scholar
  91. Vonnegut, B., and C. B. Moore, 1960: A possible effect of lightning discharge on precipitation formation process. Physics of Precipitation, Geophys. Monogr. No. 5, Washington, D. C., Amer. Geophys. Union., 287–290.Google Scholar
  92. Vonnegut, B., and A. T. Botka, 1959: Preliminary results of an experiment to determine initial precedence of organized electrification and precipitation in thunderstorms. J. geophys. Res., 64, 347–357.CrossRefGoogle Scholar
  93. Vonnegut, B., C. B. Moore, R. G. Semonin, J. W. Bullock, D. W. Staggs and W. E. Bradley, 1962: Effect of atmospheric space charge on initial electrification of cumulus clouds. J. geophys. Res., 67, 3909–3922.CrossRefGoogle Scholar
  94. Wall, E., 1948: Das Gewitter. Wett. U. Klima, 1, 8–21.Google Scholar
  95. Weickmann, H. K., and H. J. aufm Kampe, 1950: Preliminary experimental results concerning charge generation in thunderstorms concurrent with the formation of hailstones. J. Meteor., 7, 404–405.CrossRefGoogle Scholar
  96. Wilson, C. T. R., 1929: Some thundercloud problems. J. Franklin Inst., 208, 1–12.CrossRefGoogle Scholar
  97. Wilson, C. T. R., 1956: A theory of thundercloud electricity. Proc. R. Soc. A, 236, 297–317.CrossRefGoogle Scholar
  98. Workman, E. J., and S. E. Reynolds, 1948: Suggested mechanism for the generation of thunderstorm electricity. Phys. Rev., 74, p. 709.CrossRefGoogle Scholar
  99. Workman, E. J., and S. E. Reynolds, 1949: Suggested mechanism for the generation of thunderstorm electricity. Phys. Rev., 75, 347.Google Scholar
  100. Workman, E. J., and S. E. Reynolds, 1950: Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity. Phys. Rev., 78, 254–259.CrossRefGoogle Scholar
  101. Workman, E. J., and S. E. Reynolds, 1953: Thunderstorm electricity. Chicago, Univ. of Chicago Press, 322 pp.Google Scholar
  102. Wormell, T. W., 1930: Vertical electric currents below thunderstorms and showers. Proc. R. Soc. A, 127, 567–590.CrossRefGoogle Scholar
  103. Wormell, T. W., 1939: The effects of thunderstorms and lightning discharges on the earth’s electric field. Phil. Trans. A, 238, 249–303.CrossRefGoogle Scholar
  104. Zawidski, T. W., and Henry M. Papee, 1962: Pseudo-whiskers of ice grown from clouds of supercooled water in an electric field. Nature, 196, 568–569.CrossRefGoogle Scholar

Copyright information

© American Meteorological Society 1963

Authors and Affiliations

  • Bernard Vonnegut
    • 1
  1. 1.Arthur D. Little, Inc.CambridgeUSA

Personalised recommendations