Skip to main content

Radar Analysis of Severe Storms

  • Chapter
Severe Local Storms

Part of the book series: Meteorological Monographs ((METEOR,volume 5))

Abstract

Modern radar techniques must play an important part in any research program aimed at an understanding of the mechanics of the severe local storm. In operations directed at warnings of storm hazards, radar has already taken the decisive role. Recent developments, particularly in Doppler radar, suggest that it will fulfill increasingly important functions in the future. This paper will review the radar methods of severe storm analysis both in research and operations. Emphasis will be on new techniques, especially those cabable of providing quantitative information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, B., 1960: Orographic-convective precipitation as revealed by radar. Physics of Precipitation, Geophys. Monogr. No. 5, Washington, D. C., Amer. Geophys. Union, 79–85.

    Google Scholar 

  • Aoyagi, J., and N. Kodaira, 1961: The measurement of areal rainfall by radar. Conference of the Japan Meteor. Soc.

    Google Scholar 

  • Arnold, J. E., 1961: Some characteristics of severe Texas thunderstorms. Final Report, Contract No. AF19(604)-6136, A. and M. College of Texas, 47–73.

    Google Scholar 

  • Atlas, D., 1947: Preliminary report on new techniques in quantitative radar analysis of rain storms. Memo. Rep. AWNW 7–4, Part 1, All Weather Flying Div., Air Materiel Command, Oct. 1947, 69 pp.

    Google Scholar 

  • Atlas, D., 1953a: Optical extinction by rainfall. J. Meteor., 10, 486–488.

    Article  Google Scholar 

  • Atlas, D., 1953b: Device to permit radar contour mapping of rain intensity in rainstorms. U. S. Patent No. 2,656,531, Oct. 20, 1953. Also Reissue Patent No. 24,084, Nov. 1, 1955.

    Google Scholar 

  • Atlas, D., 1958: Radar as a sferics detector. Proc. Seventh Weather Radar Conf., Boston, Amer. Meteor. Soc., C 1–8.

    Google Scholar 

  • Atlas, D., 1959a: Radar lightning echoes and atmospherics in vertical cross section. Recent advances in atmospheric electricity, New York, Pergamon Press, 441–459.

    Google Scholar 

  • Atlas, D., 1959b: Radar studies of meteorological angel echoes. J. atmos. terrest. Phys., 15, 262–284.

    Article  Google Scholar 

  • Atlas, D., 1959c: Device to discretely characterize levels of signal intensity in radar mapping and computer displays. U. S. Patent No. 2,911,640, Nov. 3, 1959.

    Google Scholar 

  • Atlas, D., 1960: Possible key to the dilemma of meteorological angel echoes. J. Meteor., 17, 95–103.

    Article  Google Scholar 

  • Atlas, D., 1961: Radar scatter by large hail. Presented at the Montreal meeting of the Royal Meteorological Society, June, 7, 1961. See discussion: Quart. J. R. meteor. Soc., 87, 604–605.

    Article  Google Scholar 

  • Atlas, D., and A. C. Chmela, 1957: Physical-synoptic variations of raindrop size parameters. Proc. Sixth Weather Radar Conf., Boston, Amer. Meteor. Soc., 21–29.

    Google Scholar 

  • Atlas, D., W. G. Harper, F. H. Ludlam and W. C. Macklin, 1960: Radar scatter by large hail. Quart. J. R. meteor. Soc., 86, 468–482.

    Article  Google Scholar 

  • Atlas, D., M. Kerker and W. Hitschfeld, 1953: Scattering and attenuation of non-spherical atmospheric particles. J. atmos. terrest. Phys., 3, 108–119.

    Article  Google Scholar 

  • Atlas, D., and F. H. Ludlam, 1960: Multi-wavelength reflectivity of hailstorms. Tech. Note No. 9, Contract AF61 (052)-254, London, Imperial College of Science and Technology, 95 pp.

    Google Scholar 

  • Atlas, D., and F. H. Ludlam, 1961: Multi-wavelength reflectivity of hailstorms. Quart. J. R. meteor. Soc., 87, 523–534.

    Article  Google Scholar 

  • Atlas, D., and S. C. Mossop, 1960: Calibration of a weather radar by using a standard target. Bull. Amer. meteor. Soc., 41, 377–382.

    Google Scholar 

  • Atlas, D., and R. Wexler, 1961: Radar scatter by large non-spherical hail. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 272–279.

    Google Scholar 

  • Atlas, D., and R. Wexler, 1963: Back-scatter by oblate ice spheroids. J. atmos. Sci., 20, 48–61.

    Article  Google Scholar 

  • Austin, P. M., H. B. Cochran and G. O. Patrick, 1961: Investigations concerning the internal structure of New England squall lines. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 193–198.

    Google Scholar 

  • Austin, P. M., and S. Geotis, 1960: The radar equation parameters. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 15–22.

    Google Scholar 

  • Austin, P. M., and E. L. Williams, 1951: Comparison of radar signal intensity with precipitation rate. Tech. Rep. No. 14, Weather Radar Research, Cambridge, Mass. Inst. of Tech., 45 pp.

    Google Scholar 

  • Bartnoff, S., and D. Atlas, 1951: Microwave determination of particle size distribution. J. Meteor., 8, 130–131.

    Article  Google Scholar 

  • Bartnoff, S., and D. Atlas, and W. H. Paulsen, 1952: Experimental statistics in cloud and rain echoes. Proc. Third Weather Radar Conf., Boston, Amer. Meteor, Soc., G 1–7.

    Google Scholar 

  • Battan, L. J., 1953a: Observations on the formation and spread of precipitation in convective clouds. J. Meteor., 10, 311–324.

    Article  Google Scholar 

  • Battan, L. J., 1953b: Duration of convective radar cloud units. Bull. Amer. meteor. Soc., 34, 227–228.

    Google Scholar 

  • Battan, L. J., 1959: Radar meteorology. Chicago, Univ. of Chicago Press, 161 pp.

    Google Scholar 

  • Battan, L. J., and B. M. Herman, 1961: The radar cross sections of “spongy” ice spheres. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 226–271.

    Google Scholar 

  • Best, A. C., 1950: The size distribution of raindrops. Quart. J. R. meteor. Soc., 76, 16–36.

    Article  Google Scholar 

  • Bigler, S. G., 1955: An analysis of tornado and severe weather echoes. Proc. Fifth Weather Radar Conf., Boston, Amer. Meteor. Soc., 167–175.

    Google Scholar 

  • Bigler, S. G., 1958: On the observation and application of angel echoes using the AN/CPS-9 radar. Proc. Seventh Weather Radar Conf., Boston, Amer. Meteor. Soc., D 22–30.

    Google Scholar 

  • Blanchard, D. C., 1953: Raindrop size distribution in Hawaiian rains. J. Meteor., 10, 457–473.

    Article  Google Scholar 

  • Boyenval, E. H., 1960: Echoes from precipitation using pulsed Doppler radar. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 57–64.

    Google Scholar 

  • Braham, R. R., 1952: The water and energy budgets in the thunderstorm. J. Meteor., 9, 227–242.

    Article  Google Scholar 

  • Braham, R. R., S. E. Reynolds and J. H. Harrell, 1951: Possibilities for cloud seeding as determined by a study of cloud height versus precipitation. J. Meteor., 8, 416–418.

    Article  Google Scholar 

  • Brown, H. A., 1960: Report on radar thin lines. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 65–72.

    Google Scholar 

  • Browning, K. A., and F. H. Ludlam, 1960: Radar analysis of a hailstorm. Tech. Note No. 5, Contract AF61 (052)-254, London, Imperial College of Science and Technology, 106 pp.

    Google Scholar 

  • Browning, K. A., and F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. R. meteor. Soc., 88, 117–135.

    Article  Google Scholar 

  • Bunker, A. F., 1955: Turbulence and shearing stresses measured over the North Atlantic Ocean by an airplane acceleration technique. J. Meteor., 12, 445–455.

    Article  Google Scholar 

  • Chimera, A. M., 1960: Meteorological radar echo study. Final Rept., Contract AF33 (616)-6352. Buffalo, N. Y., Cornell Aeonaut. Lab.

    Google Scholar 

  • Chomicz, K., 1951: Reports, III, Intl. Assn. Sci. Hydr., U.G.G.I., Brussels, p. 27.

    Google Scholar 

  • Clark, R. A., 1960: A study of convective precipitation as revealed by radar observation, Texas, 1958–59. J. Meteor., 17, 415–425.

    Article  Google Scholar 

  • Cochran, H. B., 1961: A numerical description of New England squall lines. M.S. Thesis, Dept. of Meteorology, Cambridge Mass. Inst. of Tech., 24 pp.

    Google Scholar 

  • Coleman, H., 1961: Reflectivity studies of thunderstorms in Oklahoma. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., p. 126.

    Google Scholar 

  • Collis, R. T. H., and M. G. H. Ligda, 1961: A radar rain gauge. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 391–395.

    Google Scholar 

  • Conover, L. F., 1960: Angel activity, logarithmic amplifiers, and the WSR-57. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 88.

    Google Scholar 

  • Donaldson, R. J., Jr., 1960: Thunderstorm reflectivity structure. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 115–125.

    Google Scholar 

  • Donaldson, R. J., 1961a: Radar reflectivity profiles in thunderstorms. J. Meteor., 18, 292–305.

    Article  Google Scholar 

  • Donaldson, R. J., 1961b: Range distortion of thunderstorm reflectivity structure. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 165–174.

    Google Scholar 

  • Donaldson, R. J., A. C. Chmela and C. R. Shackford, 1960: Some behavior patterns of New England hailstorms. Physics of Precipitation, Geophys. Monogr. No. 5, Washington, D. C., Amer. Geophys. Union, 354–368.

    Google Scholar 

  • Douglas, R. H., 1960: Size distributions, ice contents, and radar reflectivities of hail in Alberta. Nubila, III, 5–11.

    Google Scholar 

  • Douglas, R. H., and W. Hitschfeld, 1961: Radar reflectivities of hail samples. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 147–152.

    Google Scholar 

  • East, T. W. R., and B. V. Dore, 1957: An electronic constant-altitude display. Proc. Sixth Weather Radar Conf., Boston, Amer. Meteor. Soc., 325–330.

    Google Scholar 

  • Fleisher, A., 1953: The information contained in weather noise. Wea. Radar Res. Rep. No. 22, Part A, Cambridge, Mass. Inst. of Tech., 28 pp.

    Google Scholar 

  • Fujiwara, M., 1960: An analytical investigation on the variability of size distribution of raindrops in convective storms. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 159–166.

    Google Scholar 

  • Geotis, S. G., 1961: Some radar measurements of hail. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 133–138.

    Google Scholar 

  • Geotis, S. G., and R. E. Newell, 1961: An alternative flood warning device. Weather, 16, 381.

    Google Scholar 

  • Gerhardt, J. R., C. W. Tolbert and S. A. Brunstein, 1961: Further studies of the back-scattering cross sections of water drops and wet and dry ice spheres. J. Meteor., 18, 688–691.

    Article  Google Scholar 

  • Gunn, K. L. S., 1956: Size distributions of aggregate snowflakes. Sci. Rep. MW-20B, Contract AF19(122)-217, Montreal, McGill University, 9–32.

    Google Scholar 

  • Gunn, K. L. S., and J. S. Marshall, 1955: The effect of wind shear on falling precipitation. J. Meteor., 12, 339–349.

    Article  Google Scholar 

  • Gunn, K. L. S., and J. S. Marshall, 1956: The distribution with size of aggregate snowflakes. J. Meteor., 15, 452–461.

    Article  Google Scholar 

  • Gunn, K. L. S., and T. W. R. East, 1954: The microwave properties of precipitation particles. Quart. J. R. meteor. Soc., 80 522–545.

    Article  Google Scholar 

  • Haddock, F. T., 1948: Scattering and attenuation of microwave radiation through rain. U. S. Naval Research Lab., Washington, D. C., unpublished manuscript.

    Google Scholar 

  • Hamilton, P. M., 1961: Weather radar attenuation estimates from rain gauge statistics. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 321–329.

    Google Scholar 

  • Harper, W. G., 1958: An unusual indicator of convection. Proc. Seventh Weather Radar Conf., Boston, Amer. Meteor. Soc., D 9–16.

    Google Scholar 

  • Harper, W. G., 1960: Radar back-scattering from oblate spheroids. Presented at the International Congress on the Physics of Hailstorms, Verona, Italy, August 9–13, 1960.

    Google Scholar 

  • Harrison, H. T., and E. A. Post, 1954: Evaluation of C-band (5.5 cm) airborne weather radar. United Air Lines, Inc., Chicago, Ill., 108 pp.

    Google Scholar 

  • Hartel, H. W., R. A. Clark and V. E. Moyer, 1961: Investigation of space and time variations of convective precipitation as revealed by radar reflectivity measurements. Proc. Ninth Weather Radar Conf., Boston, Amer. meteor. Soc., 83–89.

    Google Scholar 

  • Herman, B. M., and L. J. Battan, 1961a: Calculation of Mie backscattering of microwaves from ice spheres. Quart. J. R. meteor. Soc., 87, 223–230.

    Article  Google Scholar 

  • Herman, B. M., and L. J. Battan, 1961b: Calculations of Mie backscattering from melting ice spheres. J. Meteor., 18, 468–478.

    Article  Google Scholar 

  • Herman, B. M., and L. J. Battan, 1961c: Calculations of the total attenuation and angular scatter of ice spheres. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 259–265.

    Google Scholar 

  • Herman, B. M., S. R. Browning and L. J. Battan, 1961: Tables of the radar cross sections of water spheres. Tech. Rep. No. 9, Inst. of Atmos. Phys., Univ. of Arizona.

    Google Scholar 

  • Hewitt, F. J., 1953: The study of lightning echoes with 50 cm radar. Proc. Phys. Soc., B, 66, 895–897.

    Article  Google Scholar 

  • Hewitt, F. J., 1957: Radar echoes from inter-stroke processes in lightning. Proc. Phys. Soc., B, 70, 961–979.

    Article  Google Scholar 

  • Hiser, H. W., P. R. Ray and L. F. Conover, 1958: Investigation of rainfall measurement by radar. Final Report Contract Cwb-9283, Marine Laboratory, Univ. of Miami, 45 pp.

    Google Scholar 

  • Hitschfeld, W., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 58–67.

    Article  Google Scholar 

  • Imai, I., 1956: Precipitation streaks and raindrop size distributions. Pap. in Meteor. and Geophys., Meteor. Res. Inst., Japan, 7, 107–123.

    Article  Google Scholar 

  • Imai, I., M. Fujiwara and Y. Toyama, 1955: Radar reflectivity of melting snow. Pap. in Meteor. and Geophys. Meteor. Res. Inst., Japan, 6 130–139.

    Article  Google Scholar 

  • Inman, R. L., and J. E. Arnold, 1961: Thunderstorm characteristics, Chapter II of Utilization of AN/CPS-9 radar in weather analysis and forecasting. Final Report, Contract AF19(604)-6136, A. and M. Coll. of Texas, 8–73.

    Google Scholar 

  • Jones, D. M. A., 1956: Rainfall drop-size distribution and radar reflectivity. Res. Rep. No. 6, Illinois State Water Survey, April 1956, 20 pp.

    Google Scholar 

  • Kodaira, N., 1959: Quantitative mapping of radar weather echoes. Wea. Radar Res. Rep. No. 30, Cambridge, Mass. Inst. of Tech., 39 pp.

    Google Scholar 

  • Kodaira, N., 1961: Radar areal rainfall measurements. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 121–125.

    Google Scholar 

  • Labrum, N. R., 1953: The scattering of radio waves by meteorological particles. J. appl. Phys., 23, 1324–1330.

    Article  Google Scholar 

  • Laws, J. O., and D. A. Parsons, 1943: The relation of raindrop size to intensity. Trans. Amer. geophys. Union, 24, 452–460.

    Article  Google Scholar 

  • Leber, G. W., C. J. Merritt and J. P. Robertson, 1961: WSR-57 analysis of heavy rains. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 102–107.

    Google Scholar 

  • Lhermitte, R. M., 1960: The use of a spherical pulse Doppler radar in measurements of particle fall velocities. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 269–275.

    Google Scholar 

  • Lhermitte, R. M., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 218–223.

    Google Scholar 

  • Ligda, M. G. H., 1956: The radar observation of lightning. J. atmos. terrest. Phys., 9, 329–346.

    Article  Google Scholar 

  • Ligda, M. G. H., 1957a: Middle latitude precipitation patterns as observed by radar. Sci. Rep. No. 1, Contract No. AF19(604)-1564 A. and M. College of Texas.

    Google Scholar 

  • Ligda, M. G. H., 1957b: The uses of radar for lightning observation. Proc. Sixth Weather Radar Conf., Boston, Amer. Meteor. Soc., 291–296.

    Google Scholar 

  • Luckenbach, G., 1958: Two examples of non-precipitating echoes as observed on AN/CPS-9 radar. Proc. Seventh Weather Radar Conf., Boston, Amer. Meteor. Soc., D 41–47.

    Google Scholar 

  • Luckenbach, G., 1959: Some non-precipitation radar echoes as observed by AN/CPS-9 radar. Unpublished thesis, Dept. of Oceanography and Meteorology, A. and M. College of Texas.

    Google Scholar 

  • Ludlam, F. H., 1950: The composition of coagulation elements in cumulonimbus. Quart. J. R. meteor. Soc., 76, 52–58.

    Article  Google Scholar 

  • Ludlam, F. H., 1959: Hailstorm studies, 1958. Nubila, II, 7–27.

    Google Scholar 

  • Ludlam, F. H., and W. C. Macklin, 1959: Some aspects of a severe storm in S. E. England. Nubila, II, 38–50.

    Google Scholar 

  • Malkus, J. S., 1960: Recent developments in studies of penetrative convection and an application to hurricane cumulonimbus towers. Cumulus dynamics, New York, Pergamon Press, 65–84.

    Google Scholar 

  • Marshall, J. S., 1957: The constant altitude presentation of radar weather patterns. Proc. Sixth Weather Radar Conf., Boston, Amer. Meteor. Soc., 321–324.

    Google Scholar 

  • Marshall, J. S., 1960: Grey scale and CAPPI in operation. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 279–286.

    Google Scholar 

  • Marshall, J. S., and W. E. Gordon, 1957: Radiometeorology. Meteor. Monogr., Boston, Amer. meteor. Soc., 3, 73–113.

    Google Scholar 

  • Marshall, J. S., and K. L. S. Gunn, 1961: Wide dynamic range for weather radar. Beitr. Physik Atmos., 34, 69–80.

    Google Scholar 

  • Marshall, J. S., and W. Hitschfeld, 1953: Interpretation of the fluctuating echoes from randomly distributed scatterers, Part I. Canadian J. Physics., 31, 962–994.

    Article  Google Scholar 

  • Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166.

    Article  Google Scholar 

  • Mathur, P. N., and E. A. Mueller, 1955: Radar back-scattering from non-spherical scatterers. Rept. of Investigation No. 28, Illinois State Water Survey Division, 85 pp.

    Google Scholar 

  • McLean, G. S., 1961: Observation of severe convective activity in a squall line. Bull. Amer. meteor. Soc., 42, 252–269.

    Google Scholar 

  • Mount, W. D., 1960: An investigation of the liquid water content, non-adiabatic heating, and vertical accelerations within a shower using radar measurements. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 287–297.

    Google Scholar 

  • Mueller, E. A., and D. M. A. Jones, 1960: Drop size distributions in Florida. Proc. Eighth Weather Radar Conf., Boston, Amer. Meteor. Soc., 299–305.

    Google Scholar 

  • Newell, R. E., S. G. Geotis, M. L. Stone and A. Fleisher, 1955: How round are raindrops? Proc. Fifth Weather Radar Conf., Boston, Amer. Meteor. Soc., 261–268.

    Google Scholar 

  • Patrick, G. O., 1960: Relation of vertical motion to the release of latent heat. M.S. Thesis, Cambridge, Mass. Inst. of Tech., 353 pp.

    Google Scholar 

  • Plank, V. G., 1956: A meteorological study of radar angels. Geophys. Res. Paper No. 52, Air Force Cambridge Research Labs., 117 pp.

    Google Scholar 

  • Probert-Jones, J. R., 1962: The radar equation in meteorology. Quart. J. R. meteor. Soc., 88, 485–495.

    Article  Google Scholar 

  • Probert-Jones, J. R., and W. G. Harper, 1961: Vertical air motion in showers as revealed by Doppler radar. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 225–232.

    Google Scholar 

  • Rigby, E. C., J. S. Marshall and W. Hitschfeld, 1954: The development of the size distribution of raindrops during their fall. J. Meteor., 11, 362–372.

    Article  Google Scholar 

  • Rogers, R. R., 1957: Radar measurement of gustiness. Weather Radar Res. Rep. No. 29, Cambridge, Mass. Inst. of Tech., 56 pp.

    Google Scholar 

  • Rutkowski, W., and A. Fleisher, 1955: “R-meter: An instrument for measuring gustiness.” Wea. Radar Res. Rep. No. 24, Cambridge, Mass. Inst. of Tech., 15 pp.

    Google Scholar 

  • Ryde, J. W., 1946: The attenuation and radar echoes produced at centimeter wavelengths by various meteorological phenomena. Meteorological factors in radio wave propagation. London, Phys. Soc., 169–188.

    Google Scholar 

  • Ryde, J. W., and D. Ryde, 1945: Attenuation of centimeter and millimeter waves by rain, hail, fogs, and clouds. Rep. No. 8670, London, General Electric Company Res. Lab., 39 pp.

    Google Scholar 

  • Saunders, P. M., 1962: Penetrative convection in stably stratified fluids. Tellus, 14, 177–199.

    Article  Google Scholar 

  • Saunders, P. M., and F. C. Ronne, 1962: A comparison between the height of cumulus clouds and the height of radar echoes received from them. J. appl. Meteor., 1, 296–302.

    Article  Google Scholar 

  • Sivaramakrishnan, M. V., 1961: Studies of raindrop Size characteristics in different types of tropical rain using a simple raindrop recorder. Indian J. Meteor. and Geophys., 12, 189–217.

    Google Scholar 

  • Smith, R. L., and D. W. Holmes, 1961: Use of Doppler radar in meteorological observations. Mon. Wea. Rev., 89, 1–7.

    Article  Google Scholar 

  • Stackpole, J. D., 1961: The effectiveness of raindrops as turbulence sensors. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 212–217.

    Google Scholar 

  • Stevenson, A. F., 1953: Electromagnetic scattering by an ellipsoid in the third approximation. J. appl. Phys., 24, 1143–1151.

    Article  Google Scholar 

  • Stone, M. L., and A. Fleisher, 1956: The measurement of weather noise. Wea. Radar Res. Rep. No. 26, Cambridge, Mass. Inst. of Tech., 39 pp.

    Google Scholar 

  • Sweeney, H. J., 1961: The weather radar data processor. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 372–378.

    Google Scholar 

  • Swisher, S. S., 1959: Rainfall patterns associated with instability lines in New England. M.S. Thesis, Dept. of Meteorology Cambridge, Mass. Inst. of Tech., 33 pp. plus 40 figs.

    Google Scholar 

  • Tarble, R. D., 1957: The use of radar in detecting flood potential precipitation and its application to the field of hydrology. M.S. Thesis, Dept. Meteor. and Oceanogr., A. and M. College of Texas.

    Google Scholar 

  • U. S. Weather Bureau, Thunderstorm Project, 1949: The thunder-storm. Washington, D. C., U. S. Govt. Print. Off., 287 pp.

    Google Scholar 

  • Vonnegut, B., and C. B. Moore, 1958: Giant electrical storms. Recent advances in atmospheric electricity, New York, Pergamon Press, 399–411.

    Google Scholar 

  • Weickmann, H., 1953: Observational data on the formation of precipitation in cumulonimbus clouds. Thunderstorm electricity, Chicago, Univ. of Chicago Press, 66–138.

    Google Scholar 

  • Wein, M., 1961: The electronic correction for attenuation of 3.2 cm radar signals from rain. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 367–370.

    Google Scholar 

  • Wexler, R., 1961: Influence of reflectivity distributions aloft on the radar detection of precipitation. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 306–312.

    Google Scholar 

  • Wexler, R., and D. Atlas, 1958: Moisture supply and growth in stratiform precipitation. J. Meteor., 15, 531–538.

    Article  Google Scholar 

  • Wexler, R., and D. Atlas, 1963: Radar reflectivity and attenuation of rain. J. appl. Meteor., 2, 276–280.

    Article  Google Scholar 

  • Wilk, K. E., 1961: Radar reflectivity observations of Illinois thunderstorms. Proc. Ninth Weather Radar Conf., Boston, Amer. Meteor. Soc., 127–132.

    Google Scholar 

  • Williams, E. L., 1949: The pulse integrator, Part A. Wea. Radar Res. Rep. No. 8, Part A, Boston, Mass. Inst. of Technology, 35 pp.

    Google Scholar 

  • Workman, E. J., and S. J. Reynolds, 1949: Electrical activity as related to thunderstorm cell growth. Bull. Amer. meteor. Soc., 30, 142–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1963 American Meteorological Society

About this chapter

Cite this chapter

Atlas, D. (1963). Radar Analysis of Severe Storms. In: Severe Local Storms. Meteorological Monographs, vol 5. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-56-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-56-3_10

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-56-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics