Atmospheric Radiation Tables

  • Walter M. Elsasser
  • Margaret F. Culbertson
Part of the Meteorological Monographs book series (METEOR, volume 4)


This monograph contains numerical tools required to compute approximately the effects of radiative transfer in the atmosphere for the far infrared region of the spectrum. We shall not deal with the transmission and scattering of solar radiation, but only with the long-wave radiation that is emitted, and of course also absorbed, by the earth’s surface, by clouds, and by the atmosphere itself. This part of the spectrum extends from a wavelength of about 4 microns to near the microwave range at a fraction of a millimeter wavelength. The main agents of transfer are two water-vapor bands and one band of carbon dioxide. In addition, there are some bands of carbon dioxide of minor importance and a band or rather a cluster of bands of ozone.


Radiative Transfer Optical Thickness Radiative Cool Rotational Band Spectral Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. W., 1949: Pressure broadening in the microwave and infrared regions. Phys. Rev., 76, 647–661.CrossRefGoogle Scholar
  2. Bell, E. E., 1956: Interim engineering report for period July—September 1956. Ohio State Univ., Contract AF 33(616)– 3312 with Wright Air Development Center.Google Scholar
  3. Born, M., 1933: Optik. Berlin, J. Springer, 615 pp.CrossRefGoogle Scholar
  4. Bruinenberg, A., 1946: A numerical method for the calculation of temperature changes by radiation in the free atmosphere (in Dutch). Kon. Nederl. Meteor. Inst., Meded. en Verband. Serie B, Deel 1, No. 1, 57 pp.Google Scholar
  5. Chandrasekhar, S., 1950: Radiative transfer. Oxford, Clarendon Press, 393 pp.Google Scholar
  6. Cloud, W. H., 1952: The 15 micron band of CO2 broadened by nitrogen and helium. Prog. Rept., Johns Hopkins Univ., Contract Nonr 248–01, 56 pp.Google Scholar
  7. Cohen, E. R., J. W. M. DuMond, T. W. Layton, and J. S. Rollett, 1955: Analysis of variance of the 1952 data on the atomic constants and a new adjustment, 1955. Revs. Mod. Phys., 27, 363–380.CrossRefGoogle Scholar
  8. Daw, H. A., 1956: Transmission of radiation through water vapor subject to pressure broadening in the region 42 microns to 23 microns. Tech. Rep. No. 10, Univ. Utah, Contract AF 19(122)-392 with AFCRC, 70 pp.Google Scholar
  9. Dorsey, N. E., 1940: Properties of ordinary water substance. New York, Reinhold Publ. Co., 673 pp (see p. 298).Google Scholar
  10. Elsasser, W. M., 1938: Mean absorption and equivalent absorption coefficient of a band spectrum. Phys. Rev., 54, 126–129.CrossRefGoogle Scholar
  11. Elsasser, W. M., 1942: Heat transfer by infrared radiation in the atmosphere. Harvard Meteor. Studies, No. 6, Cambridge, Harvard Univ. Press, 107 pp.Google Scholar
  12. Elsasser, W. M., and J. I. King, 1953: Transmission data for the far infrared bands of carbon dioxide and ozone. Tech. Rep. No. 9, Univ. Utah, Contract AF 19 (122)-392 with AFCRC, 44 pp.Google Scholar
  13. Goody, R. M., 1952: A statistical model for water vapor absorption. Quart. J. r. Meteor. Soc., 78, 165–169.CrossRefGoogle Scholar
  14. Goody, R. M., 1954: The physics of the stratosphere. Cambridge, England, Cambridge Univ. Press, 87 pp.Google Scholar
  15. Hales, J. V., 1951: An atmospheric radiation flux divergence chart and meridional cross sections of water vapor radiational heat losses computed through its use. Thesis, unpubl., Univ. California at Los Angeles, 90 pp.Google Scholar
  16. Herzberg, G., 1945: Molecular spectra and molecular structure, Vol. II, infrared and raman spectra. New York, Van Nostrand, 632 pp.Google Scholar
  17. Howard, J. N., D. L. Burch, and D. Williams, 1956: Infrared transmission of synthetic atmospheres. J. Opt. Soc. Amer., 46, 186–189, 237–247, 334–338, 452–455. (Further data in: Geophys. Res. Pap. No. 40, AFCRC, November 1955, 245 pp.)CrossRefGoogle Scholar
  18. Hughes, R. H., 1953: The microwave spectrum and structure of ozone. J. Chem. Phys., 21, 959–960.CrossRefGoogle Scholar
  19. Kaplan, L. D., 1950: Line intensities and absorption for the 15 micron carbon dioxide band. J. Chem. Phys., 18, 186–189.CrossRefGoogle Scholar
  20. Kaplan, L. D., 1952: On the pressure dependence of radiative heat transfer in the atmosphere. J. Meteor., 9, 1–12.CrossRefGoogle Scholar
  21. Kaplan, L. D., 1953: A quasi-static approach to the calculation of atmospheric transmission. Proc. Toronto Meteor. Conf., 43–48.Google Scholar
  22. Kaplan, L. D., and D. F. Eggers, 1956: Intensity and line width of the 15 micron CO2 band determined by a curve-ofgrowth method. J. Chem. Phys., 25, 876–883.CrossRefGoogle Scholar
  23. Kaplan, L. D., M. V. Migeotte, and L. Neven, 1956: 9.6 micron band of telluric ozone and its rotational analysis. J. Chem. Phys., 24, 1183–1186.CrossRefGoogle Scholar
  24. Ladenburg, R., and F. Reiche, 1911: Ueber Selektive Absorption. Ann. der Phys., 42, 181–203.Google Scholar
  25. Mitchell, A. C., and M. K. Zemansky, 1934: Resonance radiation and excited atoms. New York, MacMillan, 385 pp.Google Scholar
  26. Möller, F., 1943: Das strahlungsdiagramm. Berlin, Springer, 9 pp.Google Scholar
  27. Mügge, R., and F. Möller, 1932: Zur berechnung von Strahlungs-strömen und Temperaturanderungen in Atmosphären von beliebigem Aufbau. Z. f. Geophys., 8, 53–64.Google Scholar
  28. Plass, G. N., 1958: Models for spectral band absorption. J. Opt. Soc. Amer., 48, 690–703.CrossRefGoogle Scholar
  29. Plass, G. N., and D. Warner, 1952: Influence of line shift and asymmetry of spectral lines on atmospheric heat transfer. J. Meteor., 9, 333–339.CrossRefGoogle Scholar
  30. Plass, G. N., and D. I. Fivel, 1953: Influence of Doppler effect and damping on line-absorption coefficient and atmospheric radiation transfer. Astrophys. J., 117, 225–233.CrossRefGoogle Scholar
  31. Plass, G. N., and D. I. Fivel, 1955: A method for the integration of the radiative transfer equation. J. Meteor., 12, 191–200.CrossRefGoogle Scholar
  32. Randall, H. M., D. M. Dennison, N. Ginsburg, and L. R. Weber, 1937: The far infrared spectrum of water vapor. Phys. Rev., 52, 160–174.CrossRefGoogle Scholar
  33. Roach, W. T., and R. M. Goody, 1958: Absorption and emission in the atmospheric window from 770 to 1250 cm-’. Quart. J. r. Meteor. Soc., 84, 319–333.CrossRefGoogle Scholar
  34. Robinson, G. D., 1950: Note on the measurement and estimation of atmospheric radiation-2. Quart. J. r. Meteor. Soc., 76, 37–51.CrossRefGoogle Scholar
  35. Strong, J., and G. N. Plass, 1950: The effect of pressure broadening of spectral lines on atmospheric temperature. Astrophys. J., 112, 365–379.CrossRefGoogle Scholar
  36. Summerfield, M., 1941: Pressure dependence of the absorption in the 9.6 micron band of ozone. Thesis, Calif. Inst. Tech., unpubl., 65 pp.Google Scholar
  37. Van Vleck, J. H., and V. F. Weisskopf, 1945: On the shape of collision-broadened lines. Revs. Mod. Phys., 17, 227–236.CrossRefGoogle Scholar
  38. Walshaw, C. D., 1957: Integrated absorption by the 9.6 µ band of ozone. Quart. J. r. Meteor. Soc., 83, 315–321.CrossRefGoogle Scholar
  39. Whittacker, E. T., and G. N. Watson, 1940: Modern analysis, fourth ed. Cambridge, England, Cambridge Univ. Press, 595 pp.Google Scholar
  40. Wilson, M. K., and R. M. Badger, 1948: A reinvestigation of the vibration spectrum of ozone. J. Chem. Phys., 16, 74.CrossRefGoogle Scholar
  41. Yamamoto, G., 1952: On a radiation chart. Sci. Rep. Tôhoku Univ., Series 5, Geophys. 4, 9–23.Google Scholar
  42. Yamamoto, G., and G. Onishi, 1953: A chart for the calculation of radiative temperature changes. Sci. Rep. Tôhoku Univ., Series 5, Geophys. 4, 108–115.Google Scholar
  43. Yamamoto, G., and T. Sasamori, 1958: Calculation of the absorption of the 15 µ carbon-dioxide band. Sci. Rep. Tôhoku Univ., Series 5, Geophys., 10, 37–45.Google Scholar

Copyright information

© American Meteorological Society 1960

Authors and Affiliations

  • Walter M. Elsasser
    • 1
  • Margaret F. Culbertson
    • 1
  1. 1.University of CaliforniaLa JollaUSA

Personalised recommendations