Skip to main content

Formulation of Mesoscale Numerical Models

  • Chapter
Book cover Mesoscale Meteorology and Forecasting
  • 776 Accesses

Abstract

Most realistic numerical models of atmospheric circulations today are complex computer codes developed to run on the largest and fastest of today’s computers. This complexity is necessary if the model is to reproduce the complicated physical processes controlling atmospheric flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270–286.

    Article  Google Scholar 

  • Anthes, R. A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111, 1306–1335.

    Article  Google Scholar 

  • Anthes, R. A., and D. Keyser, 1979: Tests of a fine-mesh model over Europe and the United States. Mon. Wea. Rev., 107, 963–984.

    Article  Google Scholar 

  • Anthes, R. A., and T. T. Warner, 1978: De-velopment of hydrostatic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev., 106, 1045–1078.

    Article  Google Scholar 

  • Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes in the UCLA general circulation model. Methods in Computational Physics, 17, J. Chang (Ed.), Academic Press, New York, 317 pp.

    Google Scholar 

  • Asselin, R. A., 1972: Frequency filter for time integrations. Mon. Wea. Rev., 100, 487–490.

    Article  Google Scholar 

  • Aubert, E. J., 1957: On the release of latent heat as a factor in large-scale atmospheric motions. J. Meteor., 14, 527–542.

    Article  Google Scholar 

  • Baumhefner, D. P., and D. J. Perkey, 1982: Evaluation of lateral boundary errors in a limited-domain model. Tellu8, 34, 409–428.

    Article  Google Scholar 

  • Chang, C.-B., D. J. Perkey, and C. W. Kreitzberg, 1981: A numerical case study of the squall line of 6 May 1975. J. Atmos. Sci., 38, 1601–1615.

    Article  Google Scholar 

  • Chang, C.-B., D. J. Perkey, and C. W. Kreitzberg, 1982: A numerical case study of the effects of latent heating on a developing wave cyclone. J. Atmos. Sci., 39, 1555–1570.

    Article  Google Scholar 

  • Chang, C.-B., D. J. Perkey, and C. W. Kreitzberg, 1984: Latent heat induced energy transformations during cyclogenesis. Mon. Wea. Rev., 112, 357–267.

    Article  Google Scholar 

  • Charney, J.G., R. Fjortoft, and J. von Neumann, 1950: Numerical integration of the barotropic vorticity equation. Tellus, 2, 237–254.

    Article  Google Scholar 

  • Courant, R., K. Friedreichs, and H. Lewy, 1928: Uber die partiellen differenzengleichungen der mathematischen physik. Math. Annalen, 100, 32–74.

    Article  Google Scholar 

  • Danard, M. B., 1964: On the influence of released latent heat on cyclone development. J. Appl. Meteor., 3, 27–37.

    Article  Google Scholar 

  • Davies, H. C., 1983: Limitations of some common lateral boundary schemes used in regional NWP models. Mon. Wea. Rev., 111, 1002–1012.

    Article  Google Scholar 

  • Dutton, J. A., 1976: The Ceaseless Wind. McGraw-Hill, New York, 579 pp.

    Google Scholar 

  • Frank, W. M., 1983: The cumulus parameterization problem. Mon. Wea. Rev., 111, 1859–1871.

    Google Scholar 

  • Fritsch, J. M., and C. F. Chappell, 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I. Convective parameterization. J. Atmos. Sci., 37, 1722–1733.

    Article  Google Scholar 

  • Fritsch, J. M., C. F. Chappell, and L. K. Hoxit, 1976: The use of large scale budgets for convective parameterization. Mon. Wea. Rev., 104, 1408–1418.

    Article  Google Scholar 

  • Fritsch, J. M., and R. A. Maddox, 1981a: Convectively driven mesoscale weather systems aloft. Part I. Observation. J. Appl. Meteor., 20, 9–19.

    Article  Google Scholar 

  • Fritsch, J. M., and R. A. Maddox, 1981b: Convectively driven mesoscale weather systems aloft. Part II: Numerical simulations. J. Appl. Meteor., 20, 20–26.

    Google Scholar 

  • Gadd, A., and J. F. Keers, 1970: Surface exchange of sensible and latent heat in a 10-level model atmosphere. Quart. J. Roy. Meteor. Soc., 96, 297–306.

    Article  Google Scholar 

  • Haltiner, G. J., and R. T. Williams, 1980: Numerical Prediction and Dynamic Meteorology. John Wiley and Sons, New York, 477 pp.

    Google Scholar 

  • Holton, J., 1972: An Introduction to Dynamic Meteorology. Academic Press, New York, 319 pp.

    Google Scholar 

  • Jones, R. W., 1977: A nested grid for a three-dimensional model of a tropical cyclone. J. Atmos. Sci., 34, 1528–1553.

    Article  Google Scholar 

  • Kaplan, M. L., J. W. Zack, V. C. Wong, and J. J. Tuccillo, 1982: Initial results from a mesoscale atmospheric circulation system and comparisons with the AVE-SESAME I data set. Mon. Wea. Rev., 110, 1564–1590.

    Article  Google Scholar 

  • Kasahara, A., 1974: Various vertical coordinate systems used for numerical weather prediction. Mon. Wea. Rev., 102, 509–522.

    Article  Google Scholar 

  • Kasahara, A., 1977: Computational aspects of numerical models for weather prediction and climate simulation. Methods in Computational Physics, 17, J. Chang (Ed.), Academic Press, New York, 317 pp.

    Google Scholar 

  • Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., 32, American Meteorological Society, Boston, 84 pp.

    Google Scholar 

  • Klemp, J. B., and D. R. Durran, 1983: An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon. Wea. Rev., 111, 430–444.

    Article  Google Scholar 

  • Kreitzberg, C. W., 1978: Progress and problems in regional numerical weather prediction. Proc. SIAM, 11, Amer. Math. Soc., 32–58.

    Google Scholar 

  • Kreitzberg, C. W., 1979: Observing, analyzing, and modeling mesoscale weather phenomena. Rev. Geophys. Space Phys., 17, 1852–1871.

    Article  Google Scholar 

  • Kreitzberg, C. W., and D. J. Perkey, 1976: Release of potential instability: Part 1A sequential plume model within a hy-drostatic primitive equation model. J. Atmos. Sci., 33, 456–475.

    Article  Google Scholar 

  • Kuo, H. L., 1965: On the formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40–63.

    Article  Google Scholar 

  • Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • McCumber, M. C., and R. A. Pielke, 1981: Simulation of the effects of surface fluxes of heat and moisture in a mesoscale numerical model; 1. Soil layer. J. Geophys. Res., 86, 9929–9938.

    Article  Google Scholar 

  • Maddox, R. A., D. J. Perkey, and J. M. Fritsch, 1981: Evolution of upper tropospheric features during the development of a mesoscale convective complex. Mon. Wea. Rev., 38, 1664–1674.

    Google Scholar 

  • Manabe, S., J. Smagorinsky, and R. R. Strickler, 1965: Simulated climatology of a general circulation model with hydrologic cycle. Mon. Wea. Rev., 93, 769798.

    Google Scholar 

  • Mathur, M. B., 1983: A quasi-Lagrangian regional model designed for operational weather prediction. Mon. Wea. Rev., 111, 2088–2098.

    Google Scholar 

  • Oke, T. R., 1978: Boundary Layer Climates, John Wiley and Sons, New York, 372 pp.

    Chapter  Google Scholar 

  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530.

    Google Scholar 

  • Orlanski, I., 1976: A simple boundary condition for unbounded hyperbolic flows. J. Comput. Phys., 21, 251–269.

    Article  Google Scholar 

  • Perkey, D. J., 1976: A description and preliminary results from a fine-mesh model for forecasting quantitative precipitation. Mon. Wea. Rev., 104, 1513–1526.

    Article  Google Scholar 

  • Perkey, D. J., and C. W. Kreitzberg, 1976: A time-dependent lateral boundary scheme for limited-area primitive equation models. Mon. Wea. Rev., 104, 745–755.

    Google Scholar 

  • Phillips, N. A., 1957: A coordinate system having some special advantages for numerical forecasting. J. Meteor., 14, 184–185.

    Article  Google Scholar 

  • Phillips, N. A., 1978: A Test of Finer Resolution. Office Note 171. [Unpublished manuscript available from National Meteorological Center, National Weather Service, W32, Washington, DC 20233.]

    Google Scholar 

  • Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115–139.

    Article  Google Scholar 

  • Pielke, R. A., 1981: Mesoscale numerical modeling. Advances in Geophysics, 23, 185–344.

    Article  Google Scholar 

  • Pielke, R. A. 1984: Mesoscale Meteorological Modeling, Academic Press, New York, 612 pp.

    Google Scholar 

  • Pielke, R. A., and C. L. Martin, 1981: The derivation of a terrain-following coordinate system for use in a hydrostatic model. J. Atmos. Sci., 8, 1707–1713.

    Article  Google Scholar 

  • Richardson, L. F., 1922: Weather Prediction by Numerical Process. Cambridge University Press (reprinted: Dover, 1965 ), 236 pp.

    Google Scholar 

  • Robert, A. J., 1966: The integration of a low order spectral form of the primitive meteorological equations. J. Meteor. Soc. Japan, 44, 237–244.

    Google Scholar 

  • Schlesinger, R. E., L. W. Uccellini, and D. R. Johnson, 1983: The effects of the Asselin time filter on numerical solutions to the linearized shallow-water wave equations. Mon. Wea. Rev., 111, 455–467.

    Article  Google Scholar 

  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev. 109, 758–766.

    Article  Google Scholar 

  • Stephens, G. L., 1984: The parameterization of radiation for numerical weather prediction and climate models. Mon. Wea. Rev., 112, 826–867.

    Article  Google Scholar 

  • Tracton, M. S., 1973: The role of cumulus convection in the development of extra-tropical cyclones. Mon. Wea. Rev., 101, 573–593.

    Article  Google Scholar 

  • Wallace, J. M., and P. V. Hobbs, 1977: Atmospheric Science, An Introductory Survey. Academic Press, New York, 467 pp.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 American Meteorological Society

About this chapter

Cite this chapter

Perkey, D.J. (1986). Formulation of Mesoscale Numerical Models. In: Ray, P.S. (eds) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-20-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-20-1_24

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-20-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics