Skip to main content

Characteristics of Isolated Convective Storms

  • Chapter

Abstract

Convective storms exist under a wide variety of conditions and evolve in an equally wide variety of ways. As the understanding of convective phenomena has increased, so has appreciation of their complexity. Storm behavior is inherently dependent on the environment in which the storm grows, including thermodynamic stability, vertical wind profiles, and mesoscale forcing influences. To the extent that the important prestorm conditions can be identified (through rawinsonde ascents, surface observations, satellites, vertical profilers, etc.), current knowledge provides valuable guidance on how convection will evolve in a given environment. For example, inferences can be made about storm motion, longevity, and potential severity. Because of the complexity of the problem, however, the knowledge of storm dynamics to date is most applicable to relatively isolated convective events, i.e., individual thunderstorm cells, small groups of cells, or some very simple squall lines. To the extent that larger scale systems such as Mesoscale Convective Complexes (MCCs) are made up of individual convective cells, this knowledge of the properties of isolated convection is still very useful. But as interactions among cells, along with mesoscale and synoptic-scale influences, become important, any inferences regarding storm behavior are made with less certainty.

Keywords

  • Wind Shear
  • Vertical Wind Shear
  • Squall Line
  • Convective Storm
  • American Meteorological Society

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-935704-20-1_15
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-1-935704-20-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Air Weather Service, 1979: The use of the Skew T, Log P Diagram in analysis and forecasting. AWS/TR-79006 (December), Air Weather Service, Scott Air Force Base, Illinois, 8 chapters, 4 attachments (revision of AWSM, 105–124 ).

    Google Scholar 

  • Brown, J. M., K. R. Knupp, and F. Caracena, 1982: Destructive winds from shallow, high based cumulonimbi. Preprints, 12th Conference on Severe Local Storms, San Antonio, Tex., American Meteorological Society, Boston, 272–275.

    Google Scholar 

  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.

    CrossRef  Google Scholar 

  • Browning, K. A., 1977: The structure and mechanism of hailstorms. In Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr. 16, American Meteorological Society, Boston, 1–43.

    Google Scholar 

  • Browning, K. A., J. C. Fankhauser, J.-P. Chalon, P. J. Eccles, R. C. Strauch, F. H. Merrem, D. J. Musil, E. L. May, and W. R. Sand, 1976: Structure of an evolving hailstorm. Part V: Synthesis and implications for hail growth and hail suppression. Mon. Wea. Rev., 104, 603–610.

    CrossRef  Google Scholar 

  • Burgess, D. W., 1974: Study of a right-moving thunderstorm utilizing new single Doppler radar evidence. Master’s thesis, Dept. of Meteorology, University of Oklahoma, 77 pp.

    Google Scholar 

  • Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesoscyclone evolution statistics. Preprints, 12th Conference on Severe Local Storms, San Antonio, Tex., American Meteorological Society, Boston, 422–424.

    Google Scholar 

  • Byers, H. R., and R. R. Braham, Jr., 1949: The Thunderstorm. Supt. of Documents, U. S. Government Printing Office, Washington, D.C., 287 pp.

    Google Scholar 

  • Chisholm, A. J., and J. H. Renick, 1972: The kinematics of multicell and supercell Alberta hailstorms. Alberta Hail Studies, Research Council of Alberta Hail Studies, Rep. 72–2, Edmonton, Canada, 24–31.

    Google Scholar 

  • Davies-Jones, R. P., 1983: The onset of rotation in thunderstorms. Preprints, 13th Conference on Severe Local Storms, Tulsa, Okla., American Meteorological Society, Boston, 215–218.

    Google Scholar 

  • Doswell, C. A., III, 1982: The Operational Meteorology of Convective Weather. Vol. I, Operational Meso-analysis. NOAA Technical Memorandum NWS NSSFC-5.

    Google Scholar 

  • Fankhauser, J. C., and C. G. Mohr, 1977: Some correlations between various sounding parameters and hailstorm characteristics in northeast Colorado. Preprints, 10th Conference on Severe Local Storms, Omaha, Neb., American Meteorological Society, Boston, 218–225.

    Google Scholar 

  • Fujita, T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1511–1524.

    CrossRef  Google Scholar 

  • Fujita, T., and H. Grandoso, 1968: Split of a thunderstorm into anticyclonic and cyclonic storms and their motion as determined from numerical model experiments. J. Atmos. Sci., 35, 1070–1096.

    Google Scholar 

  • Kessler, E., 1986: Thunderstorms: A Social, Scientific, and Technological Documentary. Vol. 2: Thunderstorm Morphology and Dynamics. Second ed. revised and enlarged, U. of Oklahoma Press, Norman, Okla., and London, 411 pp.

    Google Scholar 

  • Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos Sci., 40, 359–377.

    CrossRef  Google Scholar 

  • Klemp, J. B., and M. L. Weisman, 1983: The dependence of convective precipitation patterns on vertical wind shear. Preprints, 21st Conference on Radar Meteorology, Edmonton, Alberta, Canada, American Meteorological Society, Boston, 44–49.

    Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978a: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 6, 1070–1096.

    CrossRef  Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978b: Simulations of right- and left-moving storms produced through storm splitting. J. Atmo8. Sci., 35, 1097–1110.

    CrossRef  Google Scholar 

  • Lemon, L. R., 1980: Severe Thunderstorm Radar Identification Techniques and Warning Criteria. NOAA Tech. Memo, NWS NSSFC-3, Kansas City, Mo. (NTIS #PB81–234809), 67 pp.

    Google Scholar 

  • Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197.

    CrossRef  Google Scholar 

  • Lilly, D. K., 1979: The dynamical structure and evolution of thunderstorms and squall lines. Annual Review of Earth and Planetary Science, Vol. 7, Annual Reviews, Inc., Palo Alto, Calif., 117–161.

    Google Scholar 

  • Ludlam, F. H., 1980: Clouds and Storms. Pennsylvania State University Press, University Park, 404 pp.

    Google Scholar 

  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133–142.

    CrossRef  Google Scholar 

  • Maddox, R. A., L. R. Hoxit, and C. F. Chappell, 1980: A study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322–336.

    CrossRef  Google Scholar 

  • Marwitz, J. D., 1972: The structure and motion of severe hailstorms. Part II: Multi-cell storms. J. Appl. Meteor., 11, 180–188.

    Google Scholar 

  • Moncrieff, M. W., and J. S. A. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336–352.

    Google Scholar 

  • Newton, C. W., 1963: Dynamics of severe convective storms. In Severe Local Storms, Meteor. Monogr. 5, American Meteorological Society, Boston, 33–58.

    Google Scholar 

  • Newton, C. W., and J. C. Fankhauser, 1975: Movement and propagation of multicellular convective storms. Pure Appl. Ceophy8., 113, 747–764.

    Google Scholar 

  • Rasmussen, E. N., and R. B. Wilhelmson, 1983: Relationships between storm characteristics and 1200 GMT hodographs, low level shear and stability. Preprints, 13th Conference on Severe Local Storms, Tulsa, Okla., American Meteorological Society, Boston, 55–58.

    Google Scholar 

  • Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 171–180.

    CrossRef  Google Scholar 

  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151.

    CrossRef  Google Scholar 

  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292.

    CrossRef  Google Scholar 

  • Seitter, K. L., and H.-L. Kuo, 1983: The dynamic structure of squall-line type thunderstorms. J. Atmos. Sci., 40, 2831–2854.

    CrossRef  Google Scholar 

  • Szoke, E. J., M. L. Weisman, J. M. Brown, F. Caracena, and T. W. Schlatter, 1984: A sub-synoptic analysis of the Denver tornadoes of 3 June 1981. Mon. Wea. Rev., 112, 790–808.

    CrossRef  Google Scholar 

  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.

    CrossRef  Google Scholar 

  • Weisman, M. L., and J. B. Klemp, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498.

    CrossRef  Google Scholar 

  • Weisman, M. L., J. B. Klemp, and J. Wilson, 1983: Dynamic interpretation of notches, WERs, and mesocyclones simulated in a numerical cloud model. Preprints, 21st Conference on Radar Meteorology, Edmonton, Alberta, Canada, American Meteorological Society, Boston, 39–43.

    Google Scholar 

  • Wilhelmson, R. B., and J. B. Klemp, 1978: A three-dimensional numerical simulation of splitting that leads to long-lived storms. J. Atmo. Sci., 35, 1037–1063.

    CrossRef  Google Scholar 

  • Wilhelmson, R. B., and J. B. Klemp, 1981: A three-dimensional numerical simulation of splitting severe storms on 3 April 1964. J. Atmos. Sei., 38, 1581–1600.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1986 American Meteorological Society

About this chapter

Cite this chapter

Weisman, M.L., Klemp, J.B. (1986). Characteristics of Isolated Convective Storms. In: Ray, P.S. (eds) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-20-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-20-1_15

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-20-1

  • eBook Packages: Springer Book Archive