Skip to main content

Plume Rise

  • Chapter

Abstract

Most industrial pollution sources are stacks with discharges of momentum and heat as well as pollutants. The resulting plume rise can be considerable—hundreds of meters—and can substantially aid the dilution of plume constituents before they reach ground level. Thus, plume rise is an important factor to consider in diffusion modeling. For power plants and other moderate-to-large industrial sources, the major contribution to the rise is from the heat flux. For example, a modern power plant typically discharges ~ 100 MW of heat from its stack. Source momentum can be important for smaller sources, such as those typically found in light manufacturing. Although we will address the plume rise due to source momentum, we will give most attention to the effects of source buoyancy.

Keywords

  • Convective Boundary Layer
  • Ambient Turbulence
  • Buoyancy Flux
  • Buoyant Plume
  • Plume Rise

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-935704-16-4_4
  • Chapter length: 48 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   49.00
Price excludes VAT (USA)
  • ISBN: 978-1-935704-16-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berkowicz, R., H. R. Olesen, and U. Torp, 1986: The Danish Gaussian air pollution model (OML): Description, test and sensitivity analysis in view of regulatory applications. Air Pollution Modeling and Its Application V, C. De Wispelaere, F. A. Schiermeier, and N. V. Gillani, Eds., Plenum, New York, 453–481.

    Google Scholar 

  • Briggs, G. A., 1969: Plume Rise. USAEC Critical Review Series, TID-25075, NTIS, 81 pp.

    Google Scholar 

  • Briggs, G. A., 1971: Some recent analyses of plume rise observations. Proceedings of the Second International Clean Air Congress, H. M. Englund and W. T. Beery, Eds., Academic Press, New York, 1029–1032.

    CrossRef  Google Scholar 

  • Briggs, G. A., 1975: Plume rise predictions. Lectures on Air Pollution and Environmental Impact Analyses, D. A. Haugen, Ed., Amer. Meteor. Soc., Boston, 59–111.

    Google Scholar 

  • Briggs, G. A., 1984: Plume rise and buoyancy effects. Atmospheric Science and Power Production, D. Randerson, Ed., U.S. Dept. of Energy DOE/TIC-27601, available from NTIS as DE84005177, 327–366.

    Google Scholar 

  • Csanady, G. T., 1973: Effect of plume rise on ground level pollution. Atmos. Environ., 7, 1–16.

    CrossRef  Google Scholar 

  • Deardorff, J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91–115.

    CrossRef  Google Scholar 

  • Deardorff, J. W., 1985: Laboratory experiments on diffusion: The use of mixed-layer scaling. J. Climate Appl. Meteor., 24, 1143–1151.

    CrossRef  Google Scholar 

  • Djurfors, S., and D. Netterville, 1978: Buoyant plume rise in nonuniform wind conditions. J. Air Pollut. Control Assoc., 28, 780–784.

    CrossRef  Google Scholar 

  • Escudier, M. P., and T. Maxworthy, 1973: On the motion of turbulent thermals. J. Fluid Mech., 61, 541–552.

    CrossRef  Google Scholar 

  • Fan, L., 1967: Turbulent buoyant jets into stratified or flowing ambient fluids. California Institute of Technology, Pasadena, CA, Report KH-R-15, 195 pp.

    Google Scholar 

  • Fay, J. A., M. P. Escudier, and D. P. Hoult, 1970: A correlation of field observations of plume rise. J. Air Pollut. Control Assoc., 20, 391–397.

    CrossRef  Google Scholar 

  • Hewett, T. A., J. A. Fay, and D. P. Hoult, 1971: Laboratory experiments of smokestack plumes in a stable atmosphere. Atmos. Environ., 5, 767–789.

    CrossRef  Google Scholar 

  • Hildebrand, F. B., 1976: Advanced Calculus for Applications (second ed.) Prentice-Hall, 733 pp.

    Google Scholar 

  • Holland, J. Z., 1953: A meteorological survey of the Oak Ridge area: Final report covering the period 1948–1952. U. S. Weather Bureau, USAEC Report ORO-99, 554–559.

    Google Scholar 

  • Hoult, D. P., and J. C. Weil, 1972: A turbulent plume in a laminar crossflow. Atmos. Environ., 6, 513–531.

    CrossRef  Google Scholar 

  • Hoult, D. P., J. A. Fay, and L. J. Forney, 1969: A theory of plume rise compared with field observations. J. Air Pollut. Control Assoc., 19, 585–590.

    CrossRef  Google Scholar 

  • Kaimal, J. C., J. C. Wyngaard, D. A. Haugen, O. R. Coté, Y. Izumi, S. J. Caughey, and C. J. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169.

    CrossRef  Google Scholar 

  • Lamb, R. G., 1978: A numerical simulation of dispersion from an elevated point source in the convective boundary layer. Atmos. Environ., 12, 1297–1304.

    Google Scholar 

  • Manins, P. C., 1979: Partial penetration of an elevated inversion layer by chimney plumes. Atmos. Environ., 13, 733–741.

    CrossRef  Google Scholar 

  • Morton, B. R., G. I. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, A234, 1–23.

    CrossRef  Google Scholar 

  • Netterville, D. D. J., 1985: Plume rise in turbulent winds. 7th Symposium on Turbulence and Diffusion, Amer. Meteor. Soc., Boston, 23–26.

    Google Scholar 

  • Overcamp, T. J., and D. P. Hoult, 1971: Precipitation in the wake of cooling towers. Atmos. Environ., 5, 751–765.

    CrossRef  Google Scholar 

  • Overcamp, T. J., and T. Ku, 1986: Effect of a virtual origin correction on entrainment coefficients as determined from observations of plume rise. Atmos. Environ., 20, 293–300.

    CrossRef  Google Scholar 

  • Phillips, O. M., 1980: The Dynamics of the Upper Ocean, Cambridge University Press, Cambridge, 336 pp.

    Google Scholar 

  • Poreh, M., and A. Kacherginsky, 1981: Simulation of plume rise using small wind-tunnel models. J. Wind Eng. Ind. Aerodyn., 7, 1–14.

    CrossRef  Google Scholar 

  • Priestley, C. H. B., 1956: A working theory of the bent-over plume of hot gas. Quart. J. Roy. Meteor. Soc., 82, 165–176.

    CrossRef  Google Scholar 

  • Richards, J. M., 1961: Experiments on the penetration of an interface by buoyant thermals. J. Fluid Mech., 11, 369–384.

    CrossRef  Google Scholar 

  • Richards, J. M., 1963: The penetration of interfaces by cylindrical thermals. Quart. J. Roy. Meteor. Soc., 89, 254–264.

    CrossRef  Google Scholar 

  • Rouse, H., C.-S. Yih, and H. W. Humphreys, 1952: Gravitational convection from a boundary source. Tellus, 4, 201–210.

    CrossRef  Google Scholar 

  • Schiermeier, F. A., and L. E. Niemeyer, 1970: Large Power Plant Effluent Study (LAPPES). Vol. 1: Instrumentation, Procedures, and Data Tabulations (1968). Department of Health, Education, and Welfare, Public Health Service, Environmental Health Service, National Air Pollution Control Administration, Raleigh, NC, Publication APTD 70–2.

    Google Scholar 

  • Scorer, R. S., 1978: Environmental Aerodynamics. Halsted Press, New York, 488 PP.

    Google Scholar 

  • Slawson, P. R., and G. T. Csanady, 1967: On the mean path of buoyant, bent-over chimney plumes. J. Fluid Mech., 28, 311–322.

    CrossRef  Google Scholar 

  • Snyder, W. H., 1981: Guideline for fluid modeling of atmospheric diffusion. En–vironmental Sciences Research Laboratory, U. S. Environmental Protection Agency, Research Triangle Park, NC, Report EPA–600/8–81–009, 185 pp.

    Google Scholar 

  • Spiegel, E. A., and G. Veronis, 1960: On the Boussinesq approximation for a compressible fluid. Astrophys. J., 131, 442–447.

    CrossRef  Google Scholar 

  • Tsang, G., 1971: Laboratory study of line thermals. Atmos. Environ., 5, 445–471.

    CrossRef  Google Scholar 

  • Turner, J. S., 1963: The motion of buoyant elements in turbulent surroundings. J. Fluid Mech., 16, 1–16.

    CrossRef  Google Scholar 

  • Turner, J. S., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367 pp.

    Google Scholar 

  • Venkatram, A., 1980: Dispersion from an elevated source in a convective boundary layer. Atmos. Environ., 14, 1–10.

    CrossRef  Google Scholar 

  • Weil, J. C., 1974: The rise of moist, buoyant plumes. J. AppL Meteor., 13, 435–443.

    CrossRef  Google Scholar 

  • Weil, J. C., 1979: Assessment of plume rise and dispersion models using lidar data.

    Google Scholar 

  • Martin Marietta Environmental Center, Baltimore, Report No. PPSP-MP-24, 73 pp.

    Google Scholar 

  • Weil, J. C., 1982: Source buoyancy effects in boundary layer diffusion. Workshop on the Parameterization of Mixed Layer Diffusion, Physical Sciences Laboratory, New Mexico State University, Las Cruces, 235–246.

    Google Scholar 

  • Weil, J. C., and D. P. Hoult, 1973: A correlation of ground-level concentrations of sulfur dioxide downwind of the Keystone stacks. Atmos. Environ. 7, 707–721.

    CrossRef  Google Scholar 

  • Weil, J. C., and R. P. Brower, 1984: An updated Gaussian plume model for tall stacks. J. Air Pollut. Control Assoc., 34, 818–827.

    CrossRef  Google Scholar 

  • Weil, J. C., L. A. Corio, and R. P. Brower, 1986: Dispersion of buoyant plumes in the convective boundary layer. 5th Joint Conference on Applications of Air Pollution Meteorology, Amer. Meteor. Soc., Boston, 335–338.

    Google Scholar 

  • Willis, G. E., and J. W. Deardorff, 1974: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci., 31, 1297–1307.

    CrossRef  Google Scholar 

  • Willis, G. E., and J. W. Deardorff, 1983: On plume rise within the convective boundary layer. Atmos. Environ., 17, 2435–2447.

    CrossRef  Google Scholar 

  • Willis, G. E., and N. Hukari, 1984: Laboratory modeling of buoyant stack emissions in the convective boundary layer. 4th Joint Conference on Applications of Air Pollution Meteorology, Amer. Meteor. Soc., Boston, 24–26.

    Google Scholar 

  • Woodward, B., 1959: The motion in and around isolated thermals. Quart. J. Roy. Meteor. Soc., 85, 144–151.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1988 American Meteorological Society

About this chapter

Cite this chapter

Weil, J.C. (1988). Plume Rise. In: Venkatram, A., Wyngaard, J.C. (eds) Lectures on Air Pollution Modeling. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-16-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-16-4_4

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-16-4

  • eBook Packages: Springer Book Archive