A Planetary-Scale to Mesoscale Perspective of the Life Cycles of Extratropical Cyclones: The Bridge between Theory and Observations

  • Melvyn Shapiro
  • Heini Wernli
  • Jain-Wen Bao
  • John Methven
  • Xiaolei Zou
  • James Doyle
  • Teddy Holt
  • Evelyn Donall-Grell
  • Paul Neiman


The emergence of meteorology as a rational science began around the turn of the twentieth century when Max Margules, Hermann Helmholtz, Felix Exner, and Vilhehn Bjerknes formulated the theoretical basis for what was previously considered an empirical science with a qualitative application to weather forecasting and climatology. The concurrent synoptic studies of Sir Napier Shaw, Rudolph Lempfert, Johan Sandström, V. Bjerknes, and Heinrich von Ficker, among others, provided insight into the structure and evolution of weather systems, and an assessment of the represen-tativeness of the proposed theories. The synergy between dynamic and synoptic meteorology inspired new theories, observing strategies, conceptual models, and dramatic advances in weather forecasting. During the period 1913–1922, the Leipzig and Norwegian schools of meteorology made fundamental contributions to the advancement of the emerging science. With V. Bjerknes as their director and mentor, the research associates and students at the Geophysical Institutes in Leipzig, Germany, and Bergen, Norway, synthesized theory, observations, synoptic analysis and diagnosis in their quest for physical understanding and improved weather prediction. Their efforts gave rise to revolutionary paradigms for the theory, structure, and evolution of frontal cyclones, many of which remain widely applied in research and weather forecasting. A historical perspective of the science and the milieu of the period is reviewed in the works of Bergeron (1959), Kutzbach (1979), Friedman (1989), and in the historical chapters in this volume by Eliassen (1998), Friedman (1998), Newton and Newton (1998), and Volkert (1998).


Potential Vorticity Extratropical Cyclone Cyclone Center Isentropic Surface Upstream Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allart, M. A. F., H. Kelder, and L.C. Heijboer,1993: On the relationship between ozone and potential vorticity. Geophys. Res. Lett., 20, 811–814.Google Scholar
  2. Bergeron, T., 1928: Über die dreidimensional verknüpfende Wetteranalyse. Geofys. Publ., 5 (6), 1–111.Google Scholar
  3. Bergeron, T., 1934: Die dreidimensional verknüpfende Wetteranalyse. II. Teil: Dynamik und Thermodynamik der Fronten und Frontalst örungen. Übersetzung von W. I. Romanowskaj a aus dem deutschen Manuskript, redigiert von S. P. Chromow. Ausgabe der Zentralverwaltung des Hydro-meteorologischen Einheitsdienstes, Moskau (Russ.).Google Scholar
  4. Bergeron, T., 1937: On the physics of fronts. Bull. Amer. Meteor. Soc., 18, 265–275.Google Scholar
  5. Bergeron, T.,1959: Methods in scientific weather analysis and forecasting. An outline in the history of ideas and hints at a program. The Atmosphere and the Sea in Motion B. Bolin, Ed., Rockefeller Institute Press, 440–474.Google Scholar
  6. Bishop, C. H., 1996a: Domain independent attribution. I: Reconstructing the the wind from estimates of vorticity and divergence using free space Green’s functions. J. Atmos. Sci., 53, 241–252.CrossRefGoogle Scholar
  7. Bishop, C. H., 1996b: Domain independent attribution. II: Its value in the verification of dynamical theories of frontal waves and frontogenesis. J. Atmos. Sci., 53, 253–262.CrossRefGoogle Scholar
  8. Bishop, C. H., and Thorpe, A. J., 1994a: Frontal wave instability during moist deformation processes. Part I: Linear wave dynamics. J. Atmos. Sci., 51, 852–873.CrossRefGoogle Scholar
  9. Bishop, C. H., and Thorpe, A. J., 1994b: Frontal wave instability during moist deformation processes. Part II: The suppression ofnonlinear wave development. J. Atmos. Sci., 51, 874–888.CrossRefGoogle Scholar
  10. Bishop, C. H., and Z. Toth, 1996: Using ensembles to identify observations. likely to improve forecasts. Preprints, 11th Conference on Numerical Weather Prediction, Aug 19–23, Norfolk, Virginia, 72–74.Google Scholar
  11. Bjerknes, J., 1930: Practical examples of polar-front analysis over the British Isles in 1925–1926. Geophysical Memoirs No. 50, Meteorological Office, 50 pp.Google Scholar
  12. Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ., 3, 1–18.Google Scholar
  13. Bjerknes, V., 1904: Das problem der wettervorhersage, betrachtetGoogle Scholar
  14. vom standpunkte der Mechanik und der Physik. Meteor. Z. 21 1–7.Google Scholar
  15. Bleck, R., 1973: Numerical forecasting experiments based on the conservation of potential vorticity on isentropic surfaces. J. Appl. Meteor., 12, 737–752.CrossRefGoogle Scholar
  16. Bleck, R., 1974: Short-range prediction in isentropic coordinates with filtered and unfiltered numerical models. Mon. Wea. Rev., 102, 813–829.CrossRefGoogle Scholar
  17. Bluestein, H. 1993: Synoptic-Dynamic Meteorology in Midlatitudes, Vol I: Observations and Theory of Weather Systems Oxford University Press, 431 pp.Google Scholar
  18. Bosart, L. F., 1998: Observed cyclone life cycles, The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grönâs, Eds., Amer. Meteor. Soc., 189–215.Google Scholar
  19. Bosart, L. F., G. Hakim, K.Tile, M. Bedrick, W. Bracken, M. Dickenson, and D. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March cyclone (“Superstorm `93”) over eastern North America. Mon. Wea. Rev., 124, 1865–1891.Google Scholar
  20. Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds. Amer. Meteor. Soc., 129–153.Google Scholar
  21. Chang, M., 1993: Downstream development of baroclinic wave as inferred from regression analysis. J Atmos. Sci., 50, 999–1015.CrossRefGoogle Scholar
  22. Chang, S. W., R. J. Alliss, S. Raman, and J.-J. Shi, 1993: SSM/I Observations ofthe ERICA IOP-4 marine cyclone: A comparison with in situ observations and model simulation. Mon. Wea. Rev., 121, 2452–2464.CrossRefGoogle Scholar
  23. Chang, S. W., T. R. Holt, and K. Sashegyi, 1996: A numerical study of the ERICA IOP 4 marine cyclone. Mon. Wea. Rev., 124, 27–46.CrossRefGoogle Scholar
  24. Charney, J., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 125–162.CrossRefGoogle Scholar
  25. Charney, J., and M. E. Stern, 1962: On the stability of internal barotropic jets in a rotating atmosphere. J Atmos. Sci., 19, 159–172.CrossRefGoogle Scholar
  26. Cressman, G. P., 1948: On the forecasting of long waves in the upper westerlies. J. Meteor., 5, 44–57.CrossRefGoogle Scholar
  27. Danielsen, E. F., 1964: Stratospheric-tropospheric exchange based on radioactivity, ozone, and potential vorticity. J. Atmos. Sci., 25, 502–518.CrossRefGoogle Scholar
  28. Davies, H. C., 1998: Theories of frontogenesis. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grönâs, Eds., Amer. Meteor. Soc., 139–162.Google Scholar
  29. Davies, H. C., C. Schär, and H. Wernli, 1991: The palette of fronts and cyclones within a baroclinic wave-development. J. Atmos. Sei., 48, 1666–1689.CrossRefGoogle Scholar
  30. Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 1929–1953.CrossRefGoogle Scholar
  31. Davis, C. A., E. Donall-Grell, and M. A. Shapiro, 1996: The balanced dynamical nature of a rapidly intensifying oceanic cyclone. Mon. Wea. Rev., 124, 3–26.CrossRefGoogle Scholar
  32. Donall-Grell, E., and M. A. Shapiro, 1994: Visualization of the life cycle of a rapidly intensifying marine cyclone. Proc., Intl. Symp. on the Life Cycles of Extratropical Cyclones, Bergen, Norway, University of Bergen, 202–207.Google Scholar
  33. Dritschel, D. G., P. H. Davies, M. N. Juckes, and T. G. Shepherd, 1991: On the stability of a two-dimensional vorticity filament by adverse shear. J. Fluid Mech., 230, 647–665.CrossRefGoogle Scholar
  34. Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352.CrossRefGoogle Scholar
  35. Edelmann, W., 1963: On the behavior of disturbances in a baroclinic channel. Tech. Note No. 7, Contract AF61(052).Google Scholar
  36. Eliassen, A., 1956: Instability theories of cyclone formation. Weather Analysis and Forecasting, Vol. I, S. Petterssen, Ed., McGraw-Hill, 428 pp.Google Scholar
  37. Eliassen, A., 1962: On the vertical circulation in frontal zones. Geofys.Publ., 24, 147–160.Google Scholar
  38. Eliassen, A., 1966: Motions of intermediate scale: Fronts and cyclones. Advances in Earth Science, E. D. Hurley, Ed., The MIT Press, 111–138.Google Scholar
  39. Eliassen, A., 1990: Transverse circulations in frontal zones. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 155–165.Google Scholar
  40. Eliassen, A.,1998: Vilhelm Bjerknes’s early studies of atmospheric motion. The Life Cycles of Extratropical Cyclones M. A. Shapiro and S. Grönâs, Eds., Amer. Meteor. Soc., 5–13.Google Scholar
  41. Eliassen, A., and E. Palm, 1960: On the transfer of energy in stationary mountain waves. Geophys. Publ., 22, 1–23.Google Scholar
  42. Evj en, S., 1936: Über die vertiefung von zyklonen. Meteor. Z., 53, 165–172.Google Scholar
  43. Farrell, B. F., 1989: Transient development in confluent and diffluent flow. J. Atmos. Sci., 46, 3279–3288.CrossRefGoogle Scholar
  44. Farrell, B. F.,1998: Advances in cyclogenesis theory: Toward a generalized theory of baroclinic development. The Life Cycles of Extratropical Cyclones M. A. Shapiro and S. Grönâs, Eds., Amer. Meteor. Soc., 111–122.Google Scholar
  45. Fehlmann, R., 1997: Dynamics of seminal PV elements. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.Google Scholar
  46. Friedman, R. M., 1989: Appropriating the Weather: Vilhelm Bjerknes and the Construction of a Modern Meteorology. Cornell University Press, 251 pp.Google Scholar
  47. Friedman, R. M.,1998: Constituting the polar front, 1919–1920. The Life Cycles of Extratropical Cyclones M. A. Shapiro and S. Grönâs, Eds., Amer. Meteor. Soc., 29–40.Google Scholar
  48. Gaza, R. S., and L. F. Bosart, 1990: Trough merger characteristics over North America. Wea. Forecasting, 5, 314–331.CrossRefGoogle Scholar
  49. Godske, C. L., T. Bergeron, J. Bjerknes, and R. Bundgaard, 1957: Dynamic Meteorology and Weather Forecasting, Amer. Meteor. Soc., and Carnegie Inst. of Washington, 800 pp (see Chapter 15, p. 535 )Google Scholar
  50. Grell, G.A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM-5). NCAR/TN-398 + IA, National Center for Atmospheric Research, Boulder CO, 120 pp.Google Scholar
  51. Gyakum, J. R.,1983a: On the evolution of the QE II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 1137–1155.Google Scholar
  52. Gyakum, J. R.,1983b: On the evolution of the QE II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 1156–1173.Google Scholar
  53. Hadlock, R., and C. W. Kreitzberg, 1988: The experiment on rapidly intensifying cyclones over the Atlantic (ERICA) field study: Objectives and plans. Bull. Amer. Meteor. Soc., 69, 1309–1320.CrossRefGoogle Scholar
  54. Hakim, G. D., L.F. Bosart, and D. Keyser, 1995: The Ohio valley wave-merger cyclogenesis event of 25–26 January 1978. Part 1: Observations. Mon. Wea. Rev., 123, 2663–2692.CrossRefGoogle Scholar
  55. N. M. J. Hall and P. D. Sardeshmukh, 1998: Is the time-mean Northern Hemisphere flow baroclinically unstable? J. Atmos. Sci., 55, 4156.CrossRefGoogle Scholar
  56. Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841.CrossRefGoogle Scholar
  57. Held, I. M., 1998: Planetary waves and their interaction with smaller scales. The Life Cycles of Extratropical Cyclones. M. A. Shapiro, and S. Grönâs, Eds., Amer. Meteor. Soc., 101–109.Google Scholar
  58. Hodur, R. M., 1997: The Naval Research Laboratory’ s Coupled Ocean/ Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 1414–1430.CrossRefGoogle Scholar
  59. Hoskins, B. J., 1983: Dynamical processes in the atmosphere and the use of models. Quart. J. Roy. Meteor. Soc., 109, 1–21.CrossRefGoogle Scholar
  60. Hoskins, B. J., 1990: Theory of extratropical cyclones. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 63–80.Google Scholar
  61. Hoskins, B. J., and N. V. West, 1979: Baroclinic waves and frontogenesis. Part II: Uniform potential vorticity jet flows—cold and warm fronts. J. Atmos. Sci., 36, 1663–1680.CrossRefGoogle Scholar
  62. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.CrossRefGoogle Scholar
  63. Hoskins, B. J., and P. Berrisford, 1988: A potential vorticity perspective on the storm of 15–16 October 1987. Weather, 43, 122–129.CrossRefGoogle Scholar
  64. Houtekamer, P.L., and J. Derome, 1995: Methods for ensemble prediction. Mon. Wea. Rev., 123, 2181–2196.CrossRefGoogle Scholar
  65. Hovmöller, E., 1949: The trough and ridge diagram. Tellus, 1 (2), 62–66.CrossRefGoogle Scholar
  66. Joly, A., and A. J. Thorpe, 1990: Frontal instability generated by tropospheric potential vorticity anomalies. Quart. J. Roy. Meteor. Soc., 116, 525–560.CrossRefGoogle Scholar
  67. Joly, A., and the FASTEX Team, 1997: The Fronts and Atlantic Storm-Track Experiment (FASTEX): Scientific objectives and experimental design. Bull. Amer. Met. Soc., 78, 1917–1940.CrossRefGoogle Scholar
  68. Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 45 2499.Google Scholar
  69. Kleinschmidt, E., 1950a: Über Aufbau und Entstehung von Zyklonen I (On the structure and formation of cyclones). Meteor. Rundsch., 3, Teil 1, 1–6.Google Scholar
  70. Kleinschmidt, E., 1950b: Über aufbau und entstehung von zyklonen II (On the structure and formation of cyclones). Meteor. Rundsch., 3, Teil 2, 54–61.Google Scholar
  71. Kutzbach, G., 1979: The Thermal Theory of Cyclones. A History of Meteorological Thought in the Nineteenth Century. Amer. Meteor. Soc., 255 pp.Google Scholar
  72. Langland, R. H., and G. D. Rohaly, 1996: Adjoint -based targeting of observations for FASTEX cyclones. Preprints, 7th Mesoscale Processes Conf., 9–13 Sept. 1996, Reading, U.K., Amer. and Roy. Meteor. Socs., pp. 369–371.Google Scholar
  73. Majewski, D. 1991: The Europa-model of the Deutcher Wetterdienst. Numerical methods in atmospheric models, Vol. II., ECMWF, Reading UK, 147–191.Google Scholar
  74. Manobianco, J., L. W. Uccellini, K. F. Brill, and Y.-W. Yuo, 1992: The impact of dynamic data assimilation on the numerical simulations of the QE II cyclone and an analysis of the jet streak influencing the precyclogenetic envrionment. Mon. Wea. Rev., 120, 19731976.Google Scholar
  75. Massacand Alexia, C., H. Wernli, and H. C. Davies, 1998: Heavy precipitation on the Alpine south side: An upper-level precursor. Geophys. Res. Lett., 25, 1435–1438.CrossRefGoogle Scholar
  76. Mattocks, C. and R. Bleck, 1986: Jet streak dynamics and geostrophic adjustment processes during the initial stage of lee cyclogenesis. Mon. Wea. Rev., 114, 2033–2056.CrossRefGoogle Scholar
  77. McGinnigle, J. B., M. V. Young, and M. J. Bader, 1988: The development of instant occlusions in the North Atlantic. Meteor. Mag., 117, 325–341.Google Scholar
  78. Methven, J., 1996: Tracer behaviour in baroclinic waves. Ph.D. Thesis, Reading University.Google Scholar
  79. Miles, M. K., 1959: Factors leading to the meridional extension of thermal troughs and some forecasting criteria derived from them. Meteor. Mag., 88, 193–203.Google Scholar
  80. Morgan, M. C., and J. W. Nielsen-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 241–265.CrossRefGoogle Scholar
  81. Namias, P., J., and Clapp, 1944: Studies of the motion and development of long waves in the westerlies. J. Meteor., 1, 57–77.Google Scholar
  82. Neiman, P. J., and M. A. Shapiro, 1993: The life cycle of an extratropical marine cyclone. Part I: Frontal-cyclone evolution and thermodynamic air-sea interaction. Mon. Wea. Rev., 121, 2153–2176.CrossRefGoogle Scholar
  83. Neiman, P. J., and L. F. Fedor, 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 2177–2199.CrossRefGoogle Scholar
  84. Newton, C. W., 1954: Frontogenesis and frontolysis as a three-dimensional process. J. Meteor.,11, 449–461.Google Scholar
  85. Newton, C. W., and J. E. Carson: 1953: Structure of wind field and variations of vorticity in a summer situation. Tellus, 5, 321–339.CrossRefGoogle Scholar
  86. Newton, C. W., and H. R.-Newton, 1998: The Bergen school concepts come to America. The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grönâs, Eds., Amer. Meteor. Soc., 44–60.Google Scholar
  87. Orlanski, I., and E. K. M. Chang, 1993: Ageostrophic geopotential fluxes in downstream and upstream development of baroclinic waves. J. Atmos. Sci., 50, 212–225.CrossRefGoogle Scholar
  88. Newton, C. W., and J.Katzfey: 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part 1: Eddy energy budget. J. Atmos. Sci., 48, 1972–1998.CrossRefGoogle Scholar
  89. Palmén, E., and C. W. Newton, 1969: Atmospheric Circulation Systems. Academic Press, 603 pp.Google Scholar
  90. Palmer, T. N., R. Gelaro, J. Barkmeijer, and R. Buizza, 1998: Singular vectors, metrics and adaptive observations. J. Atmos. Sci., 55, 633–653.CrossRefGoogle Scholar
  91. Petterssen, S., 1955: A general survey of factors affecting development at sea level. J. Meteor., 12, 36–42.CrossRefGoogle Scholar
  92. Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Met. Soc., 79, 457–482.CrossRefGoogle Scholar
  93. Reed, R. J., 1955: A study of a characteristic type of upper-level frontogenesis. J Meteor., 12, 542–552.CrossRefGoogle Scholar
  94. Reed, R. J., 1990: Advances in knowledge and understanding of extratro-pical cyclones during the past quarter century: An overview. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. Holopainen, Eds., Amer. Meteor. Soc, 27–45.Google Scholar
  95. Reed, R. J., and F. Sanders, 1953: An investigation of the development of a mid-tropospheric frontal zone and its associated vorticity field. J. Meteor., 10, 338–349.CrossRefGoogle Scholar
  96. Reed, R. J., and E. F. Danielsen, 1959: Fronts in the vicinity of the tropopause. Arch. Meteor. Geophys. Bioklim., All, 1–17.Google Scholar
  97. Renfrew, I. A., 1995: The development of secondary frontal cyclones. Ph.D. Thesis, University of Reading.Google Scholar
  98. Renfrew, I. A., A. J. Thorpe, and C. Bishop, 1997: The role of environmental flow in the development of secondary frontal cyclones. Quart. J. Roy. Meteor. Soc., 123, 1653–1675.CrossRefGoogle Scholar
  99. Riehl, H. and Collaborators, 1952: Forecasting in middle latitudes. Meteor. Monogr., 1 (5), 80 p.Google Scholar
  100. Rivals, H., J.-P. Cammas, and I. A. Renfrew, 1998: Secondary cyclo-genesis: the initiation phase of a frontal wave observed over the eastern Atlantic. Quart. J. Roy. Meteor. Soc., 124, 243–267.CrossRefGoogle Scholar
  101. Rossby, C.-G., 1945: On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves. J. Meteor., 2, 187–204.CrossRefGoogle Scholar
  102. Rotunno, R., and J.-W. Bao, 1996: A case study of cyclogenesis using a model hierarchy. Mon. Wea. Rev., 124, 1051–1066.CrossRefGoogle Scholar
  103. Sawyer, J. S., 1956: The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. Roy. Soc. London, A234, 346–362.CrossRefGoogle Scholar
  104. Schär, C., and H. Wernli, 1993: Structure and evolution of an isolated semi-geostrophic cyclone. Quart. J. Roy. Meteor. Soc., 119, 5790.CrossRefGoogle Scholar
  105. Schultz, D. M., D. Keyser, and L. F. Bosart, 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 1767–1791.CrossRefGoogle Scholar
  106. Shapiro, M. A., 1981: Frontogenesis and geostrophically forced secondary circulations in the vicinity of jet stream-frontal zone systems. J. Atmos. Sci., 38, 954–973.CrossRefGoogle Scholar
  107. Shapiro, M. A., T. Hampel, and A. J. Krueger, 1987: The arctic tropopause fold. Mon. Wea. Rev., 115, 444–454.CrossRefGoogle Scholar
  108. Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams, and the tropopause. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.Google Scholar
  109. Shapiro, M. A., and E. D-Grell, 1994: In search of synoptic/dynamic conceptualizations of the life cycles of fronts, jet stream and the tropopause. Proc., Int. Symp. on the Life Cycles of Extra-tropical Cyclones, University of Bergen, Bergen, Norway, 163–181Google Scholar
  110. Simmons, A. J., and B. J. Hoskins, 1979: The downstream and upstream development of unstable baroclinic waves. J. Atmos. Sci., 36, 1239–1254.CrossRefGoogle Scholar
  111. Simmons, A. J., and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J Atmos. Sci., 37, 1679 1684.Google Scholar
  112. Snyder, C., 1996: Summary of an informal workshop on adaptive observations and FASTEX. Bull. Amer. Meteor. Soc., 77, 953964.Google Scholar
  113. Thorncroft, C. D., and B. J. Hoskins, 1990: Frontal cyclogenesis. J. Atmos. Sci., 47, 2317–2336.CrossRefGoogle Scholar
  114. Thorncroft, C. D., and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life cycle behavior. Quart. J. Roy. Meteor. Soc., 119, 17–55.CrossRefGoogle Scholar
  115. Toth, Z. and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317–2330.CrossRefGoogle Scholar
  116. Uccellini, L. W., 1986: The possible influence of upstream upper-level baroclinic processes on the development of the QE II storm. Mon. Wea. Rev., 114, 1019–1027.CrossRefGoogle Scholar
  117. Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 81–105.Google Scholar
  118. Uccellini, L. W., and D. Johnson, 1979: The coupling between upper and lower tropospheric jet streaks and the implication for the development of convective storms. Mon. Wea. Rev., 107, 682–703.CrossRefGoogle Scholar
  119. Volkert, H., 1998: Components of the Norwegian cyclone model: Observations and theoretical ideas in Europe prior to 1920, The Life Cycles of Extratropical Cyclones, M. A. Shapiro and S. Grönâs, Eds., Amer. Meteor. Soc., 15–28.Google Scholar
  120. Wernli, J. H., 1995: Lagrangian perspective of extratropical cyclogenesis. Dissertation No. 11016, Swiss Federal Institute of Technology (ETH), Zurich.Google Scholar
  121. Yeh, T.-C., 1949: On energy dispersion in the atmosphere. J. Atmos. Sci., 6, 1–16.Google Scholar
  122. Zou, X, Y.-H. Kuo, and S. Low-Nam, 1998: Medium-range prediction of an extratropical oceanic cyclone: Impact of initial state. Mon. Wea. Rev. (in press).Google Scholar

Copyright information

© American Meteorological Society 1999

Authors and Affiliations

  • Melvyn Shapiro
    • 1
  • Heini Wernli
    • 2
  • Jain-Wen Bao
    • 3
  • John Methven
    • 4
  • Xiaolei Zou
    • 5
  • James Doyle
    • 6
  • Teddy Holt
    • 6
  • Evelyn Donall-Grell
    • 7
  • Paul Neiman
    • 7
  1. 1.NOAA/Environmental Technology LaboratoryBoulderUS
  2. 2.Swiss Federal Institute of TechnologyZurichSwitzerland
  3. 3.University of Colorado and NOAA/ETLCIRESBoulderUnited States
  4. 4.University of ReadingReadingUK
  5. 5.Florida State UniversityTallahasseeUS
  6. 6.Naval Research LaboratoryMontereyUS
  7. 7.NOAA/Environmental Technology LaboratoryBoulderUS

Personalised recommendations