Advertisement

Convectively Driven High Wind Events

  • Roger M. Wakimoto
Part of the Meteorological Monographs book series (METEOR)

Abstract

On a day when the potential instability is sufficient, it is possible to initiate storms from rising air parcels. One estimate of the intensity of these buoyant plumes (also an indicator of the severity of the storm) is based on parcel theory (Bluestein et al. 1988, 1989; Holton 1992). These rising parcels of air rapidly cool until saturation occurs. Further lifting results in condensation and, in a short period of time, precipitation develops. It is often at this stage that another fundamental element of a storm commonly forms: the convective downdraft.

Keywords

Wind Shear Convective Available Potential Energy Vertical Wind Shear Gravity Current Doppler Radar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberty, R. L., D. W. Burgess, and T. T. Fujita, 1980: Severe weather events of 10 April 1979. Bull. Amer. Meteor. Soc., 61, 1033–1034.Google Scholar
  2. Atkins, N. T., and R. M. Wakimoto, 1991: Wet microburst activity over the southeastern United States. Wea. Forecasting, 6, 470–482.CrossRefGoogle Scholar
  3. Atkins, N. T., and T. M. Weckwerth, 1995: Observations of the sea-breeze front during CaPE. Part II: Dual-Doppler and aircraft analysis. Mon. Wea. Rev., 123, 944–969.CrossRefGoogle Scholar
  4. Atlas, D., and Coauthors, 1963: Severe Local Storms. Meteor. Monogr., No. 27, Amer. Meteor. Soc., 247 pp.Google Scholar
  5. Barnes, S. L., 1978: Oklahoma thunderstorms on 29–30 April 1970. Part I: Morphology of a tornadic storm. Mon. Wea. Rev., 106, 673–684.CrossRefGoogle Scholar
  6. Battan, L. J., 1973: Radar Observations of the Atmosphere. University of Chicago Press, Chicago, 324 pp.Google Scholar
  7. Battan, L. J., 1980: Observations of two Colorado thunderstorms by means of a zenith-pointing Doppler radar. J. Appl. Meteor., 19, 580–592.CrossRefGoogle Scholar
  8. Beckwith, W. B., 1957: Characteristics of Denver hailstorms. Bull. Amer. Meteor. Soc., 38, 20–30.Google Scholar
  9. Beebe, R. G., 1955: Types of airmasses in which tornadoes occur. Bull. Amer. Meteor. Soc., 36, 349–350.Google Scholar
  10. Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209–248.CrossRefGoogle Scholar
  11. Bentley, M. L., and T. L. Mote, 1998: A climatology of derechoproducing mesoscale convective systems in the central and eastern United States, 1986–95. Part I: Temporal and spatial distribution. Bull. Amer. Meteor. Soc., 79, 2527–2540.CrossRefGoogle Scholar
  12. Bernstein, B. C., and R. H. Johnson, 1994: A dual-Doppler radar study of an OK PRE-STORM heat burst event. Mon. Wea. Rev., 122, 259–273.CrossRefGoogle Scholar
  13. Betts, A. K., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39, 1484–1505.CrossRefGoogle Scholar
  14. Betts, A. K., 1984: Boundary layer thermodynamics of a high plains severe storm. Mon. Wea. Rev., 112, 2199–2211.CrossRefGoogle Scholar
  15. Betts, A. K., and M. F. Silva Dias, 1979: Unsaturated downdraft thermo-dynamics in cumulonimbus. J. Atmos. Sci., 36, 1061–1071.CrossRefGoogle Scholar
  16. Biggerstaff, M. I., and R. A. Houze Jr., 1991: Kinematic and precipitation structure of the 10–11 June 1985 squall line. Mon. Wea. Rev., 119, 3035–3065.CrossRefGoogle Scholar
  17. Biggerstaff, M. I., and, 1993: Kinematics and microphysics of the transition zone of a midlatitude squall-line system. J. Atmos. Sci., 50, 3091–3110.Google Scholar
  18. Bluestein, H. B., E. W. McCaul, G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian, Texas, storm of 7 May 1986. Mon. Wea. Rev., 116, 1790–1804.CrossRefGoogle Scholar
  19. Bluestein, H. B., G. Martin, S. Keighton, and L. C. Showell, 1989: Mobile sounding observations of a thunderstorm near the dryline: The Gruver, Texas storm complex of 25 May 1987. Mon. Wea. Rev., 117, 244–250.CrossRefGoogle Scholar
  20. Blyth, A. M., W. A. Cooper, and J. B. Jensen, 1988: A study of the source of entrained air in Montana cumuli. J. Atmos. Sci., 45, 3944–3964.CrossRefGoogle Scholar
  21. Braham, R. R., Jr., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227–242.CrossRefGoogle Scholar
  22. Brandes, E. A., 1984: Vertical vorticity generation and mesocyclone sustenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112, 2253–2269.CrossRefGoogle Scholar
  23. Brandes, E. A., and C. L. Ziegler, 1993: Mesoscale downdraft influences on vertical vorticity in a mature mesoscale convective system. Mon. Wea. Rev., 121, 1337–1353.Google Scholar
  24. Britter, R. E., and J. E. Simpson, 1978: Experiments on the dynamics of a gravity current head. J. Fluid Mech., 88, 223–240.CrossRefGoogle Scholar
  25. Britter, R. E., and, 1981: A note on the structure of the head of an intrusive gravity current. J. Fluid Mech., 112, 459–466.Google Scholar
  26. Brooks, C. F., 1922: The local, or heat thunderstorm. Mon. Wea. Rev., 50, 281–287.CrossRefGoogle Scholar
  27. Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313–338.CrossRefGoogle Scholar
  28. Brown, J. M., K. R. Knupp, and F. Caracena, 1982: Destructive winds from shallow, high-based cumulonimbi. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 272–275.Google Scholar
  29. Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys. Space Phys., 18, 683–697.CrossRefGoogle Scholar
  30. Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the mean wind. J. Atmos. Sci., 21, 634–639.CrossRefGoogle Scholar
  31. Browning, K. A., 1977: The structure and mechanisms of hailstorms. Hail: A Review of Hail Science and Hail Suppression, Meteor. Monogr., No. 38, Amer. Meteor. Soc., 1–43.Google Scholar
  32. Browning, K. A., 1982: Nowcasting., Academic Press, 256 pp.Google Scholar
  33. Browning, K. A., and F. H. Ludlam, 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117–135.CrossRefGoogle Scholar
  34. Burgess, D. W., and B. F. Smull, 1990: Doppler radar observations of a bow echo with a long-track severe windstorm. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 203–208.Google Scholar
  35. Businger, S., T. Birchard, K. Kodama, P. A. Jendrowski, and J.-J. Wang, 1998: A bow echo and severe weather associated with a Kona low in Hawaii. Wea. Forecasting, 13, 576–591.CrossRefGoogle Scholar
  36. Byers, H. R., and H. R. Rodebush, 1948: Causes of thunderstorms of the Florida peninsula. J. Meteor., 5, 275–280.CrossRefGoogle Scholar
  37. Byers, H. R., and R. R. Braham Jr., 1949: The Thunderstorm. U.S. Government Printing Office, 287 pp.Google Scholar
  38. Caracena, F., and M. W. Maier, 1987: Analysis of a microburst in the FACE meteorological mesonetwork in southern Florida. Mon. Wea. Rev., 115, 969–985.CrossRefGoogle Scholar
  39. Caracena, F., J. McCarthy, and J. A. Flueck, 1983: Forecasting the likelihood of microbursts along the front range of Colorado. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 261–264.Google Scholar
  40. Carbone, R., 1983: A severe frontal rainband. Part II: Tornado parent vortex circulation. J. Atmos. Sci., 40, 2639–2654.CrossRefGoogle Scholar
  41. Carbone, R., J. W. Conway, N. A. Crook, and M. W. Moncrieff, 1990: The generation and propagation of a nocturnal squall line. Part I: Observations and implications for mesoscale predictability. Mon. Wea. Rev., 118, 26–49.CrossRefGoogle Scholar
  42. Chalon, J.-P., F. Roux, G. Jaubert, and J.-P. Lafore, 1988: The west African squall line observed on 23 June during COPT81. J. Atmos. Sci., 45, 2744–2763.CrossRefGoogle Scholar
  43. Charba, J., 1974: Application of a gravity current model to analysis of squall line gust front. Mon. Wea. Rev., 102, 140–156.CrossRefGoogle Scholar
  44. Charba, J., and Y. Sasaki, 1971: Structure and movement of the severe thunderstorms of 3 April 1964 as revealed from radar and surface mesonetwork data analysis. J. Meteor. Soc. Japan, 49, 191–214.Google Scholar
  45. Chong, M., P. Amayenc, G. Scialom, and J. Testud, 1987: A tropical squall line observed during the COPT 81 experiment in west Africa. Part I: Kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670–694.CrossRefGoogle Scholar
  46. Cook, A. W., 1939: The diurnal variation of summer rainfall in Denver. Mon. Wea. Rev., 67, 95–98.CrossRefGoogle Scholar
  47. Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 1767–1785.CrossRefGoogle Scholar
  48. Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 520–534.CrossRefGoogle Scholar
  49. Das, P., and M. C. Subbarao, 1972: The unsaturated downdraught. Ind. J. Meteor. Geophys., 23, 135–144.Google Scholar
  50. Davies-Jones, R. P., 1986: Tornado dynamics. Thunderstorms: A Social and Technological Documentary, Vol. II, 2d ed., E. Kessler, Ed., University of Oklahoma Press, 197–236.Google Scholar
  51. Dodge, J., J. Arnold, G. Wilson, J. Evans, and T. T. Fujita, 1986: The Cooperative Huntsville Meteorological Experiment (COHMEX). Bull. Amer. Meteor. Soc., 67, 417–419.Google Scholar
  52. Doswell, C. A., 1994: Extreme convective windstorms: Current understanding and research. Report of the Proceedings of the U.S.-Spain Workshop on Natural Hazards, 44–55. [Available from the Iowa Institute of Hydraulic Research, University of Iowa, Iowa City, IA 52242.]Google Scholar
  53. Doswell, C. A., J. T. Schaefer, D. W. McCann, T. W. Schlatter, and H. B. Wobus, 1982: Thermodynamic analysis procedures at the National Severe Storms Forecast Center. Preprints, Ninth Conf. Weather Forecasting and Analysis, Seattle, WA, Amer. Meteor. Soc., 304–309.Google Scholar
  54. Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 2381–2403.CrossRefGoogle Scholar
  55. Droegemeier, K. K., and, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 1180–1210.Google Scholar
  56. Ellrod, G., 1989: Environmental conditions associated with the Dallas microburst storm determined from satellite soundings. Wea. Forecasting, 4, 469–484.CrossRefGoogle Scholar
  57. Elmore, K. L., J. McCarthy, W. Frost, and H. P. Chang, 1986: A high resolution spatial and temporal multiple Doppler analysis of a microburst and its application to aircraft flight simulation. J. Climate Appl. Meteor., 25, 1398–1452.CrossRefGoogle Scholar
  58. Emanuel, K. A., 1981: A similarity theory for unsaturated down-drafts within clouds. J. Atmos. Sci., 38, 1541–1580.CrossRefGoogle Scholar
  59. Emanuel, K. A., and Coauthors, 1995: Report of the first prospectus devel-opment team of the U.S. Weather Research Program to NOAA and the NSF. Bull. Amer. Meteor. Soc., 76, 1194–1208.Google Scholar
  60. Fankhauser, J. C., 1971: Thunderstorm-environment interactions determined from aircraft and radar observations. Mon. Wea. Rev., 99, 171–192.CrossRefGoogle Scholar
  61. Fankhauser, J. C., 1976: Structure of an evolving hailstorm. II. Thermody-namic structure and airflow in the near environment. Mon. Wea. Rev., 104, 576–587.CrossRefGoogle Scholar
  62. Fankhauser, J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev., 123, 291–313.CrossRefGoogle Scholar
  63. Fawbush, E. J., and R. C. Miller, 1954: A basis for forecasting peak wind gusts in non-frontal thunderstorms. Bull. Amer. Meteor. Soc., 35, 14–19.Google Scholar
  64. Forbes, G. S., and R. M. Wakimoto, 1983: A concentrated outbreak of tornadoes, downbursts, and microbursts, and implications regarding vortex classification. Mon. Wea. Rev., 111, 220–235.CrossRefGoogle Scholar
  65. Foster, D. S., 1958: Thunderstorm gusts compared with computed downdraft speeds. Mon. Wea. Rev., 76, 91–94.CrossRefGoogle Scholar
  66. Fovell, R. G., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846–3879.CrossRefGoogle Scholar
  67. Fovell, R. G., and P. S. Dailey, 1995: The temporal behavior of numeri-cally simulated multicell-type storms. Part I: Mode of behavior. J. Atmos. Sci., 52, 2073–2095.CrossRefGoogle Scholar
  68. Fraser, A. B., and C. F. Bohren, 1992: Is virga rain that evaporates before reaching the ground? Mon. Wea. Rev., 120, 1565–1571.CrossRefGoogle Scholar
  69. Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 7, 405–436.CrossRefGoogle Scholar
  70. Fujita, T. T., 1959: Precipitation and cold air production in mesoscale thunderstorm systems. J. Meteor., 16, 454–466.CrossRefGoogle Scholar
  71. Fujita, T. T., 1963: Analytical mesometeorology. A review. Meteor. Monogr., No. 5, Amer. Meteor. Soc., 77–125.Google Scholar
  72. Fujita, T. T., 1974: Overshooting thunderheads observed from ATS and Learjet. SMRP Research Paper 117, University of Chicago, Department of the Geophysical Sciences, 51 pp.Google Scholar
  73. Fujita, T. T., 1978: Manual of downburst identification for project NIM-ROD. SMRP Research Paper 156, University of Chicago, 104 pp. [NTIS PB-2860481.]Google Scholar
  74. Fujita, T. T., 1981: Tornadoes and downbursts in the context of general-ized planetary scales. J. Atmos. Sci., 38, 1511–1534.CrossRefGoogle Scholar
  75. Fujita, T. T., 1985: The downburst. SMRP Research Paper 210, Univer- sity of Chicago, 122 pp. [NTIS PB-148880.]Google Scholar
  76. Fujita, T. T., 1986: DFW microburst on August 2, 1985. SMRP Research Paper 217, University of Chicago, 154 pp. [NTIS PB 86131638.]Google Scholar
  77. Fujita, T. T., 1989: The Teton-Yellowstone tornado of 21 July 1987. Mon. Wea. Rev., 117, 1913–1940.CrossRefGoogle Scholar
  78. Fujita, T. T., 1992: Mystery of severe storms. WRL Research Paper 239, University of Chicago, 298 pp. [NTIS PB 92–182021.]Google Scholar
  79. Fujita, T. T., and H. R. Byers, 1977: Spearhead echo and downbursts in the crash of an airliner. Mon. Wea. Rev., 105, 129–146.CrossRefGoogle Scholar
  80. Fujita, T. T., and F. Caracena, 1977: An analysis of three weather-related aircraft accidents. Bull. Amer. Meteor. Soc., 58, 1164–1181.CrossRefGoogle Scholar
  81. Fujita, T. T., and R. M. Wakimoto, 1981: Five scales of airflow associated with a series of downbursts of 16 July 1980. Mon. Wea. Rev., 109, 1438–1456.Google Scholar
  82. Fujita, T. T., G. S. Forbes, and T. A. Umenhofer, 1976: Close-up view of 20 March 1976 tornadoes: Sinking cloud tops to suction vortices. Weatherwise, 29, 116–145.CrossRefGoogle Scholar
  83. Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118–135.CrossRefGoogle Scholar
  84. Gamache, J. F., and, 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40, 1835–1850.Google Scholar
  85. Gentry, R. C., and P. L. Moore, 1954: Relation of local and general wind interaction near the sea coast to time and location of air-mass showers. J. Meteor., 11, 507–511.CrossRefGoogle Scholar
  86. Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology. Mon. Wea. Rev., 126, 943–958.CrossRefGoogle Scholar
  87. Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440.CrossRefGoogle Scholar
  88. Gurka, J. J., 1976: Satellite and surface observations of strong wind zones accompanying thunderstorms. Mon. Wea. Rev., 104, 1484–1493.CrossRefGoogle Scholar
  89. Hall, F., and R. D. Brewer, 1959: A sequence of tornado damage patterns. Mon. Wea. Rev., 87, 207–216.CrossRefGoogle Scholar
  90. Haman, K., 1973: On the updraft-downdraft interaction in convective clouds. Acta. Geophys. Polonica, 31, 216–233.Google Scholar
  91. Hamilton, R. E., 1970: Use of detailed intensity radar data in mesoscale surface analysis of the 4 July 1969 storm in Ohio. Preprints, 14th Conf. on Radar Meteor., Tucson, AZ, Amer. Meteor. Soc., 339–342.Google Scholar
  92. Hamilton, R. A., and J. W. Archbold, 1945: Meteorology of Nigeria and adjacent territory. Quart. J. Roy. Meteor. Soc., 71, 231–265.CrossRefGoogle Scholar
  93. Hane, C. E., and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar data in a tornadic thunderstorm. J. Atmos. Sci., 42, 18–35.CrossRefGoogle Scholar
  94. Harris, F. I., 1977: The effects of evaporation at the base of ice precipitation layers: Theory and radar observations. J. Atmos. Sci., 34, 651–672.CrossRefGoogle Scholar
  95. Heymsfield, A. J., P. N. Johnson, and J. E. Dye, 1978: Observations of moist adiabatic ascent in northeast Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 1689–1703.CrossRefGoogle Scholar
  96. Heymsfield, G. M., and S. Schotz, 1985: Structure and evolution of a severe squall line over Oklahoma. Mon. Wea. Rev., 113, 1563–1589.CrossRefGoogle Scholar
  97. Hinrichs, G., 1888: Tornadoes and derechos. Amer. Meteor. J., 5, 306-317, 341–349.Google Scholar
  98. Hjelmfelt, M. R., 1987: The microburst of 22 June 1982 in JAWS. J. Atmos. Sci., 44, 1646–1665.CrossRefGoogle Scholar
  99. Hjelmfelt, M. R., 1988: Structure and life cycle of microburst outflows observed in Colorado.. 1. Appl. Meteor., 27, 900–927.CrossRefGoogle Scholar
  100. Hjelmfelt, M. R., H. D. Orville, R. D. Roberts, J. P. Chen, and F. J. Kopp, 1989: Observational and numerical study of a microburst line-producing storm. J. Atmos. Sci., 46, 2731–2743.CrossRefGoogle Scholar
  101. Holle, R. L., and M. W. Maier, 1980: Tornado formation from downdraft interactions in the FACE mesonet-work. Mon. Wea. Rev., 108, 1010–1028.CrossRefGoogle Scholar
  102. Holton, J. R., 1992: An Introduction to Dynamic Meteorology, Academic Press, 511 pp.Google Scholar
  103. Hookings, G. A., 1965: Precipitation-maintained downdrafts. J. Appl. Meteor., 4, 190–195.CrossRefGoogle Scholar
  104. Hookings, G. A., 1967: Hail-maintained downdrafts. J. Appl. Meteor., 6, 589–591.CrossRefGoogle Scholar
  105. Flouze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540–1567.CrossRefGoogle Scholar
  106. Hookings, G. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425–461.CrossRefGoogle Scholar
  107. Hookings, G. A., 1993: Cloud Dynamics., Academic Press, 570 pp.Google Scholar
  108. Hookings, G. A., S. A. Rutledge, M. I. Biggerstaff, and B. F. Smull, 1989: Interpretation of Doppler weather radar displays of midlatitude mesoscale convective systems. Bull. Amer. Meteor. Soc., 70, 608–619.CrossRefGoogle Scholar
  109. Hookings, G. A., B. F. Smull, and P. Dodge, 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613–654.CrossRefGoogle Scholar
  110. Humphreys, W. J., 1914: The thunderstorm and its phenomena. Mon. Wea. Rev., 42, 348–380.CrossRefGoogle Scholar
  111. Idso, S. B., 1974: Thunderstorm outflows: Different perspectives over arid and mesic terrain. Mon. Wea. Rev., 102, 603–604.CrossRefGoogle Scholar
  112. Igau, R. C., M. A. LeMone, and D. Wei, 1999: Updraft and downdraft cores in TOGA COARE: Why so many buoyant downdraft cores? J. Atmos. Sci., 56, 2232–2245.CrossRefGoogle Scholar
  113. Intrieri, J. M., A. J. Bedard, and R. M. Hardesty, 1990: Details of colliding thunderstorm outflows as observed by Doppler lidar. J. Atmos. Sci., 47, 1081–1098.CrossRefGoogle Scholar
  114. Johns, R. H., 1982: A synoptic climatology of northwest flow severe weather outbreaks. Part I: Nature and significance. Mon. Wea. Rev., 110, 1653–1663.CrossRefGoogle Scholar
  115. Johns, R. H., 1984: A synoptic climatology of northwest flow severe weather outbreaks. Part II: Meteorological parameters and synoptic patterns. Mon. Wea. Rev., 112, 449–464.CrossRefGoogle Scholar
  116. Johns, R. H., 1993: Meteorological conditions associated with bow echo development in convective storms. Wea. Forecasting, 8, 294–299.CrossRefGoogle Scholar
  117. Johns, R. H., and W. D. Hirt, 1987: Derechos: Widespread convectively induced windstorms. Wea. Forecasting, 2, 32–49.CrossRefGoogle Scholar
  118. Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecast-ing. Wea. Forecasting, 7, 588–612.CrossRefGoogle Scholar
  119. Johnson, R. H., and P. J. Hamilton, 1988: The relationship of surface pressure features to the precipitation and air flow structure of an intense midlatitude squall line. Mon. Wea. Rev., 116, 1444–1472.CrossRefGoogle Scholar
  120. Johnson, R. H., S. Chen, and J. J. Toth, 1989: Circulations associated with a mature-to-decaying midlatitude mesoscale convective system. Part I: Surface features—Heat bursts and mesolow development. Mon. Wea. Rev., 117, 942–959.Google Scholar
  121. Jorgensen, D. P., and B. F. Smull, 1993: Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bull. Amer. Meteor. Soc., 74, 2146–2157.CrossRefGoogle Scholar
  122. Kamburova, P. L., and F. H. Ludlam, 1966: Rainfall evaporation in thunderstorm downdrafts. Quart. J. Roy. Meteor. Soc., 92, 510–518.CrossRefGoogle Scholar
  123. Kelly, D. L., J. T. Schaefer, R. P. McNulty, C. A. Doswell III, and R. F. Abbey, 1978: An augmented tornado climatology. Mon. Wea. Rev., 106, 1172–1183.CrossRefGoogle Scholar
  124. Kelly, D. L., and C. A. Doswell III, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 1997–2014.CrossRefGoogle Scholar
  125. Kessinger, C. J., D. B. Parsons, and J. W. Wilson, 1988: Observations of a storm containing misocyclones, downbursts, andGoogle Scholar
  126. horizontal vortex circulations. Mon. Wea. Rev., 116, 1959–1982.Google Scholar
  127. Kessler, E., 1986: Thunderstorms: A Social and Technological Documentary, Vol. II., 2d ed., University of Oklahoma Press, 603 pp.Google Scholar
  128. Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 2913–2933.CrossRefGoogle Scholar
  129. Kingsmill, D. E., and R. M. Wakimoto, 1991: Kinematic, dynamic, and thermodynamic analysis of a weakly sheared severe thunder- storm over northern Alabama. Mon. Wea. Rev., 119, 262–297.CrossRefGoogle Scholar
  130. Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Ann. Rev. Fluid Mech., 19, 369–402.CrossRefGoogle Scholar
  131. Klemp, J. B., and R. B. Wilhelmson, 1978: Simulation of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 1097–1110.CrossRefGoogle Scholar
  132. Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377.CrossRefGoogle Scholar
  133. Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38, 1558–1580.CrossRefGoogle Scholar
  134. Klimowski, B. A., 1994: Initiation and development of rear inflow within the 28–29 June 1989 North Dakota mesoconvective system. Mon. Wea. Rev., 122, 765–779.CrossRefGoogle Scholar
  135. Klemp, J. B., and M. R. Hjelmfelt, 1998: Climatology and structure of high wind-producing mesoscale convective systems over the northern High Plains. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 444–447.Google Scholar
  136. Knupp, K. R., 1987: Downdrafts within high plains cumulonimbi. Part I: General kinematic structure. J. Atmos. Sci., 44, 987–1008.CrossRefGoogle Scholar
  137. Knupp, K. R., 1988: Downdrafts within high plains cumulonimbi. Part II: Dynamics and thermodynamics. J. Atmos. Sci., 45, 3965–3982.CrossRefGoogle Scholar
  138. Knupp, K. R., and W. R. Cotton, 1982: An intense, quasi-steady thunderstorm over mountainous terrain. Part II: Doppler radar observations of the storm morphological structure. J. Atmos. Sci., 39, 343–358.CrossRefGoogle Scholar
  139. Knupp, K. R., and, 1985: Convective cloud downdraft structure: An interpretive survey. Rev. Geophys., 23, 183–215.Google Scholar
  140. Koch, S. E., 1984: The role of an apparent mesoscale frontogenetical circulation in squall line initiation. Mon. Wea. Rev., 112, 2090–2111.CrossRefGoogle Scholar
  141. Kropfli, R. A., and L. J. Miller, 1976: Kinematic structure and flux quantities in a convective storm from dual-Doppler radar observations. J. Atmos. Sci., 33, 520–529.CrossRefGoogle Scholar
  142. Krueger, S. K., R. M. Wakimoto, and S. J. Lord, 1986: Role of ice-phase microphysics in dry microburst simulations. Preprints, 23d Conf. on Radar Meteor., Snowmass, CO, Amer. Meteor. Soc., R73–R76.Google Scholar
  143. Krumm, W. R., 1954: On the cause of downdrafts from dry thunderstorms over the plateau area of the United States. Bull. Amer. Meteor. Soc., 35, 122–125.Google Scholar
  144. Kuettner, J. P., 1959: The band structure of the atmosphere. Tellus, 2, 267–294.CrossRefGoogle Scholar
  145. Lafore, J.-P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 521–544.CrossRefGoogle Scholar
  146. Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669–679.CrossRefGoogle Scholar
  147. Leduc, M., and P. Joe, 1993: Bow echoes storms near Toronto, Canada associated with very low buoyant energies. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 573–576.Google Scholar
  148. Lee, B. D., R. D. Farley, and M. R. Hjelmfelt, 1991: A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado. J. Atmos. Sci., 48, 2350–2366.CrossRefGoogle Scholar
  149. Lee, W.-C., R. M. Wakimoto, and R. E. Carbone, 1992: The evolution and structure of a “bow-echo-microburst” event. Part II: The bow echo. Mon. Wea. Rev., 120, 2211–2225.CrossRefGoogle Scholar
  150. Lemon, L. R., 1976: The flanking line, a severe thunderstorm intensification source. J. Atmos. Sci., 33, 686–694.CrossRefGoogle Scholar
  151. Lemon, L. R., and C. A. Doswell, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197.CrossRefGoogle Scholar
  152. LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 1077–1091.CrossRefGoogle Scholar
  153. LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 1815–1834.CrossRefGoogle Scholar
  154. LeMone, M. A., G. M. Barnes, and E. J. Zipser, 1984: Momentum flux by lines of cumulonimbus over the tropical oceans. J. Atmos. Sci., 41, 1914–1932.CrossRefGoogle Scholar
  155. LeMone, M. A., G. M. Barnes, J. C. Frankhauser, and L. F. Tarleton, 1988a: Perturbation pressure fields measured by aircraft around the cloud-base updraft of deep convective clouds. Mon. Wea. Rev., 116, 313–327.CrossRefGoogle Scholar
  156. LeMone, M. A., L. F. Tarleton, and G. M. Barnes, 1988b: Perturbation pressure at the base of cumulus clouds in low shear. Mon. Wea. Rev., 116, 2062–2068.Google Scholar
  157. List, R., and E. P. Lozowski, 1970: Pressure perturbations and buoyancy in convective clouds. J. Atmos. Sci., 27, 168–170.CrossRefGoogle Scholar
  158. Loeher, S. M., and R. H. Johnson, 1995: Surface pressure and precipitation life cycle characteristics of PRE-STORM mesoscale convective systems. Mon. Wea. Rev., 123, 600–621.CrossRefGoogle Scholar
  159. Ludlam, D. M., 1970: Early American Tornadoes. Amer. Meteor. Soc., 97 pp.Google Scholar
  160. Ludlam, F. H., 1980: Cloud and Storms: The Behavior and Effect of Water in the Atmosphere., The Pennsylvania State University Press, 405 pp.Google Scholar
  161. MacPherson, J. I., and G. A. Isaac, 1977: Turbulent characteristics of some Canadian cumulus clouds. J. Atmos. Sci., 16, 81–90.Google Scholar
  162. Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 1374–1387.CrossRefGoogle Scholar
  163. MacPherson, J. I., and C. A. Doswell III, 1982: An examination of jetstream configurations, 500 mb vorticity advection and low-level thermal advection patterns during extended periods of intense convection. Mon. Wea. Rev., 110, 184–197.Google Scholar
  164. Mahoney, W. P., 1988: Gust front characteristics and the kinematics associated with interacting thunderstorm outflows. Mon. Wea. Rev., 116, 1474–1491.CrossRefGoogle Scholar
  165. Mahoney, W. P., and A. R. Rodi, 1987: Aircraft measurements on microburst development from hydrometeor evaporation. J. Atmos. Sci., 44, 3037–3051.CrossRefGoogle Scholar
  166. Mahoney, W. P., and K. L. Elmore, 1991: The evolution and fine-scale structure of a microburst-producing cell. Mon. Wea. Rev., 119, 176–192.CrossRefGoogle Scholar
  167. Malkus, J. S., 1955: On the formation and structure of downdrafts in cumulus clouds. J. Meteor., 12, 350–354.CrossRefGoogle Scholar
  168. Matthews, D. A., 1981: Observations of a cloud arc triggered by thunderstorm outflow. Mon. Wea. Rev., 109, 2140–2157.CrossRefGoogle Scholar
  169. McCann, D. W., 1994: WINDEX—A new index for forecasting microburst potential. Wea. Forecasting, 9, 532–541.CrossRefGoogle Scholar
  170. McCaul, E. W., H. B. Bluestein, and R. J. Doviak, 1987: Airborne Doppler lidar observations of convective phenomena in Oklahoma. J. Atmos. Oceanic Technol., 4, 479–497.CrossRefGoogle Scholar
  171. McCarthy, J., J. W. Wilson, and T. T. Fujita, 1982: The joint airport weather studies project. Bull. Amer. Meteor. Soc., 63, 15–22.CrossRefGoogle Scholar
  172. McCarthy, J., and R. Serafin, 1984: The microburst: Hazard to aircraft. Weatherwise, 37, 121–127.CrossRefGoogle Scholar
  173. McNulty, R. P., 1991: Downbursts from innocuous clouds: An example. Wea. Forecasting, 6, 148–154.CrossRefGoogle Scholar
  174. McNulty, R. P., 1995: Severe and convective weather: A central region forecasting challenge. Wea. Forecasting, 10, 187–202.CrossRefGoogle Scholar
  175. Merritt, M. W., D. Klingle-Wilson, and S. D. Campbell, 1989: Wind shear detection with pencil-beam radars. Lincoln Lab. J., 2, 483–510.Google Scholar
  176. Middleton, G. V., 1966: Experiments on density and turbidity currents. Can. J. Earth. Sci., 3, 523–546.CrossRefGoogle Scholar
  177. Mielke, K. B., and E. R. Carle, 1987: An early morning dry microburst in the great basin. Wea. Forecasting, 2, 169–174.CrossRefGoogle Scholar
  178. Miller, M. J., and A. K. Betts, 1977: Traveling convective storms over Venezuela. Mon. Wea. Rev., 105, 833–848.CrossRefGoogle Scholar
  179. Mitchell, K. E., and J. B. Hovermale, 1977: A numerical investigation of a severe thunderstorm gust front. Mon. Wea. Rev., 105, 657–675.CrossRefGoogle Scholar
  180. Moncrieff, M. W., and C. Liu, 1999: Convection initiation by density currents: Role of convergence, shear, and dynamical organization. Mon. Wea. Rev., 127, 2455–2464.CrossRefGoogle Scholar
  181. Mueller, C. K., and R. E. Carbone, 1987: Dynamics of a thunderstorm outflow. J. Atmos. Sci., 44, 1879–1898.CrossRefGoogle Scholar
  182. Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8, 132–146.CrossRefGoogle Scholar
  183. Newton, C. W., 1950: Structure and mechanism of the prefrontal squall line. J. Meteor., 7, 210–222.CrossRefGoogle Scholar
  184. Newton, C. W., 1966: Circulations in large sheared cumulonimbus. Tellus, 18, 699–713.CrossRefGoogle Scholar
  185. Newton, C. W., and H. R. Newton, 1959: Dynamical interaction between large convective clouds and environment with vertical shear. J. Meteor., 16, 483–496.CrossRefGoogle Scholar
  186. Nolan, R. H., 1959: A radar pattern associated with tornadoes. Bull. Amer. Meteor. Soc., 40, 277–279.Google Scholar
  187. Normand, C. W. B., 1946: Energy in the atmosphere. Quart. J. Roy. Meteor. Soc., 72, 145–167.CrossRefGoogle Scholar
  188. Ogura, Y., and M.-T. Liou, 1980: The structure of a midlatitude squall line: A case study. J. Atmos. Sci., 37, 553–567.CrossRefGoogle Scholar
  189. Ohno, H., O. Suzuki, and K. Kusunoki, 1996: Climatology of downburst occurrence in Japan. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 87–90.Google Scholar
  190. Orf, L. G., and J. R. Anderson, 1999: A numerical study of traveling microbursts. Mon. Wea. Rev., 127, 1244–1258.CrossRefGoogle Scholar
  191. Orf, L. G., and J. M. Straka, 1996: A three-dimensional numerical analysis of colliding microburst outflow dynamics. J. Atmos. Sci., 53, 2490–2511.CrossRefGoogle Scholar
  192. Paluch, I. R., 1979: The entrainment mechanism in Colorado cumuli. J. Atmos. Sci., 36, 2467–2478.CrossRefGoogle Scholar
  193. Paluch, I. R., and D. W. Breed, 1984: A continental storm with a steady, adiabatic updraft and high concentrations of small ice particles: 6 July 1976 case study. J. Atmos. Sci., 41, 1008–1024.CrossRefGoogle Scholar
  194. Parsons, D. B., and R. A. Kropfli, 1990: Dynamics and fine structure of a microburst. J. Atmos. Sci., 47, 1674–1692.CrossRefGoogle Scholar
  195. Parsons, D. B., and M. L. Weisman, 1993: A numerical study of a rotating downburst. J. Atmos. Sci., 50, 2369–2385.CrossRefGoogle Scholar
  196. Pedgley, D. E., 1962: A meso-synoptic analysis of the thunder- storms on 28 August 1958. Geophys. Mem., 106, 74 pp.Google Scholar
  197. Pielke, R. A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115–139.CrossRefGoogle Scholar
  198. Potts, R. J., 1991: Microburst observations in tropical Australia. Preprints, 25th Int. Conf. on Radar Meteor., Paris, France, Amer. Meteor. Soc., J67–J72.Google Scholar
  199. Proctor, F. H., 1988: Numerical simulations of an isolated micro-burst. Part I: Dynamics and structure. J. Atmos. Sci., 45, 3137–3160.CrossRefGoogle Scholar
  200. Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci., 46, 2143–2165.CrossRefGoogle Scholar
  201. Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203–218.CrossRefGoogle Scholar
  202. Purdom, J. F. W., 1973: Meso-highs and satellite imagery. Mon. Wea. Rev., 101, 180–181.CrossRefGoogle Scholar
  203. Purdom, J. F. W., 1982: Subjective interpretations of geostationary satellite data for nowcasting. Nowcasting, K. Browning, Ed., Academic Press, 149–166.Google Scholar
  204. Ragette, G., 1973: Mesoscale circulations associated with Alberta hailstorms. Mon. Wea. Rev., 101, 150–159.CrossRefGoogle Scholar
  205. Ramond, D., 1978: Pressure perturbations in deep convection. J. Atmos. Sci., 35, 1704–1711.CrossRefGoogle Scholar
  206. Rao, P. A., H. E. Fuelberg, and K. K. Droegemeier, 1999: High resolution modeling of the Cape Canaveral area land-water circulations and associated features. Mon. Wea. Rev., 127, 1808–1821.CrossRefGoogle Scholar
  207. Ray, P. S., 1986: Mesoscale Meteorology and Forecasting. Amer. Meteor. Soc., 793 pp.Google Scholar
  208. Raymond, D. J., R. Solomon, and A. M. Blyth, 1991: Mass flux in New Mexico mountain thunderstorms from radar and aircraft measurements. Quart. J. Roy. Meteor. Soc., 117, 587–621.CrossRefGoogle Scholar
  209. Rinehart, R. E., A. Borho, and C. Curtiss, 1995: Microburst rotation: Simulations and observations. J. Appl. Meteor., 34, 1267–1285.CrossRefGoogle Scholar
  210. Roberts, R. D., and J. W. Wilson, 1989: A proposed microburst nowcasting procedure using single-Doppler radar. J. Appl. Meteor., 28, 285–303.CrossRefGoogle Scholar
  211. Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151.CrossRefGoogle Scholar
  212. Rotunno, R., and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463–485.CrossRefGoogle Scholar
  213. Roux, F., 1988: The west African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406–426.CrossRefGoogle Scholar
  214. Rutledge, S. A., R. A. Houze Jr., M. I. Biggerstaff, and T. Matejka, 1988: The Oklahoma-Kansas mesoscale convective system of 10–11 June 1985: Precipitation structure and single-Doppler radar analysis. Mon. Wea. Rev., 116, 1409–1430.CrossRefGoogle Scholar
  215. Ryan, B. F., and J. C. Carstens, 1978: A comparison between a steady-state downdraft model and observations behind squall lines. J. Appl. Meteor., 17, 395–400.CrossRefGoogle Scholar
  216. Schaefer, J. T., 1986: Severe thunderstorm forecasting: A historical perspective. Wea. Forecasting, 1, 164–189.CrossRefGoogle Scholar
  217. Schaefer, J. T., L. R. Hoxit, and C. F. Chappell, 1985: Thunderstorms and their mesoscale environment. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., U.S. Government Printing Office, 113–130.Google Scholar
  218. Schlesinger, R. E., 1978: A three-dimensional numerical model of an isolated thunderstorm. Part I: Comparative experiments for variable ambient wind shear. J. Atmos. Sci., 35, 690–713.CrossRefGoogle Scholar
  219. Schlesinger, R. E., 1980: A three-dimensional numerical model of an isolated thunderstorm. Part II: Dynamics of updraft splitting and meso-vortex couplet evolution. J. Atmos. Sci., 37, 395–420.CrossRefGoogle Scholar
  220. Schlesinger, R. E., 1984: Mature thunderstorm cloud-top structure and dynamics: A three-dimensional numerical simulation study. J. Atmos. Sci., 41, 1551–1570.CrossRefGoogle Scholar
  221. Schmidt, J. M., and W. R. Cotton, 1989: A high plains squall line associated with severe surface winds. J. Atmos. Sci., 46, 281–302.CrossRefGoogle Scholar
  222. Simpson, J. E., 1969: A comparison between laboratory and atmosphere density currents. Quart. J. Roy. Meteor. Soc., 95, 758–765.CrossRefGoogle Scholar
  223. Schlesinger, R. E., 1972: Effects of the lower boundary on the head of a gravity current. J. Fluid Mech., 53, 759–768.CrossRefGoogle Scholar
  224. Schlesinger, R. E., 1987: Gravity Currents: In the Environment and the Labo-ratory., Ellis Horwood, 244 pp.Google Scholar
  225. Schlesinger, R. E., and R. E. Britter, 1979: The dynamics of the head of a current advancing over a horizontal surface. J. Fluid Mech., 94, 478–497.Google Scholar
  226. Schlesinger, R. E., and, 1980: A laboratory model of an atmospheric mesofront. Quart. J. Roy. Meteor. Soc., 106, 485–500.CrossRefGoogle Scholar
  227. Skamarock, W. C., M. L. Weisman, and J. B. Klemp, 1994: Three-dimensional evolution of simulated long-lived squall lines. J. Atmos. Sci., 51, 2563–2584.CrossRefGoogle Scholar
  228. Smull, B. F., and R. A. Houze Jr., 1985: A midlatitude squall line with a trailing region of stratiform rain: Radar and satellite observations. Mon. Wea. Rev., 113, 117–133.CrossRefGoogle Scholar
  229. Smull, B. F., and, 1987a: Dual-Doppler radar analysis of a midlatitude squall line with a trailing region of stratiform rain. J. Atmos. Sci., 44, 2128–2148.CrossRefGoogle Scholar
  230. Smull, B. F., and, 1987b: Rear-inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 2869–2889.CrossRefGoogle Scholar
  231. Smull, B. F., and J. A. Augustine, 1993: Multiscale analysis of a mature mesoscale convective complex. Mon. Wea. Rev., 121, 103–132.CrossRefGoogle Scholar
  232. Sommeria, G., and J. Testud, 1984: COPT81: A field experiment designed for the study of dynamics and electrical activity of deep convection in continental tropical regions. Bull. Amer. Meteor. Soc., 65, 4–10.CrossRefGoogle Scholar
  233. Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 1004–1023.CrossRefGoogle Scholar
  234. Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 1752–1773.CrossRefGoogle Scholar
  235. Srivastava, R. C., T. J. Matejka, and T. J. Lorello, 1986: Doppler radar study of the trailing anvil region associated with a squall line. J. Atmos. Sci., 43, 356–377.CrossRefGoogle Scholar
  236. Stensrud, D. J., and R. A. Maddox, 1988: Opposing mesoscale circulations: A case study. Wea. Forecasting, 3, 189–204.CrossRefGoogle Scholar
  237. Stensrud, D. J., and C. L. Ziegler, 1991: A sublimation-initiated mesoscale downdraft and its relation to the wind field below a precipitating anvil cloud. Mon. Wea. Rev., 119, 2124–2139.CrossRefGoogle Scholar
  238. Stumpf, G. J., R. H. Johnson, and B. F. Smull, 1991: The wake low in a midlatitude mesoscale convective system having complex convective organization. Mon. Wea. Rev., 119, 134–158.CrossRefGoogle Scholar
  239. Sun, J., S. Braun, M. I. Biggerstaff, R. G. Fovell, and R. A. Houze Jr., 1993: Warm upper-level downdrafts associated with a squall line. Mon. Wea. Rev., 121, 2919–2927.CrossRefGoogle Scholar
  240. Szeto, K. K., C. A. Lin, and R. E. Stewart, 1988a: Mesoscale circulations forced by melting snow. Part I: Basic simulations and dynamics. J. Atmos. Sci., 45, 1629–1641.CrossRefGoogle Scholar
  241. Szeto, K. K., R. E. Stewart, and C. A. Lin, 1988b: Mesoscale circulations forced by melting snow. Part II: Application to meteorological features. J. Atmos. Sci., 45, 1642–1650.CrossRefGoogle Scholar
  242. Tao, W.-K., and J. Simpson, 1989: Modeling study of a tropical squall-line convective line. J. Atmos. Sci., 46, 177–202.CrossRefGoogle Scholar
  243. Thorpe, A. J., M. J. Miller, and M. W. Moncrieff, 1982: Two-dimensional convection in nonconstant shear: A model of midlatitude squall lines. Quart. J. Roy. Meteor. Soc., 108, 739–762.CrossRefGoogle Scholar
  244. Trier, S. B., W. C. Skamarock, and M. A. LeMone, 1997: Structure and evolution of the 22 February 1993 TOGA COARE squall line: Organization mechanisms inferred from numerical simulation. J. Atmos. Sci., 54, 386–407.CrossRefGoogle Scholar
  245. Tripoli, G. J., and W. R. Cotton, 1980: A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl. Meteor., 19, 1037–1063.CrossRefGoogle Scholar
  246. Tripoli, G. J., and, 1986: An intense, quasi-steady thunderstorm over mountainous terrain. Part IV: Three-dimensional numerical simulation. J. Atmos. Sci., 43, 894–912.Google Scholar
  247. Tuttle, J. D., V. N. Bringi, H. D. Orville, and F. J. Kopp, 1989: Multiparameter radar study of a microburst: Comparison with model results. J. Atmos. Sci., 46, 601–620.CrossRefGoogle Scholar
  248. van Tassel, E. L., 1955: The North Platte Valley tornado outbreak of June 27, 1955. Mon. Wea. Rev., 83, 255–264.CrossRefGoogle Scholar
  249. Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082.CrossRefGoogle Scholar
  250. Wakimoto, R. M., 1983: The West Bend, Wisconsin storm of 4 April 1981: A problem in operational meteorology. J. Climate Appl. Meteor., 22, 181–189.CrossRefGoogle Scholar
  251. Wakimoto, R. M., 1985: Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113, 1131–1143.CrossRefGoogle Scholar
  252. Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST Project. Mon. Wea. Rev., 116, 1521–1539.CrossRefGoogle Scholar
  253. Wakimoto, R. M., and N. T. Atkins, 1994: Observations of the sea-breeze front during CaPE. Part I: Single-Doppler, satellite, and cloud photogrammetry analysis. Mon. Wea. Rev., 122, 1092–1114.CrossRefGoogle Scholar
  254. Wakimoto, R. M., C. J. Kessinger, and D. E. Kingsmill, 1994: Kinematic, thermodynamic, and visual structure of low-reflectivity micro-bursts. Mon. Wea. Rev., 122, 72–92.CrossRefGoogle Scholar
  255. Wakimoto, R. M., W.-C. Lee, H. B. Bluestein, C.-H. Liu, and P. H. Hilde-brand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc., 77, 1465–1481.CrossRefGoogle Scholar
  256. Wakimoto, R. M., C. H. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm’s life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372–392.CrossRefGoogle Scholar
  257. Warner, J., 1970: The microstructure of cumulus cloud. Part III. The nature of the updraft. J. Atmos. Sci., 27, 682–688.CrossRefGoogle Scholar
  258. Weaver, J. F., and S. P. Nelson, 1982: Multiscale aspects of thunderstorm gust fronts and their effects on subsequent storm development. Mon. Wea. Rev., 110, 707–718.CrossRefGoogle Scholar
  259. Weaver, J., J. F. W. Purdom, and S. B. Smith, 1994: Comments on nowcasts of thunderstorm initiation and evolution. Wea. Forecasting, 9, 658–662.CrossRefGoogle Scholar
  260. Weckwerth, T. M., and R. M. Wakimoto, 1992: The initiation and organization of convective cells atop a cold-air outflow boundary. Mon. Wea. Rev., 120, 2169–2187.CrossRefGoogle Scholar
  261. Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769–784.CrossRefGoogle Scholar
  262. Wei, D., A. M. Blyth, and D. J. Raymond, 1998: Buoyancy of convective clouds in TOGA COARE. J. Atmos. Sci., 55, 3381–3391.CrossRefGoogle Scholar
  263. Weisman, M. L., 1992: The role of convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 1826–1847.CrossRefGoogle Scholar
  264. Weisman, M. L., 1993: The genesis of severe, long-lived bow echoes. J. Atmos. Sci., 50, 645–670.CrossRefGoogle Scholar
  265. Weisman, M. L., and C. A. Davis, 1998: Mechanisms for the generation of mesoscale vortices within quasi-linear convective systems. J. Atmos. Sci., 55, 2603–2622.CrossRefGoogle Scholar
  266. Weisman, M. L., J. B. Klemp, and R. Rotunno, 1988: Structure and evolution of numerically simulated squall lines. J. Atmos. Sci., 45, 1990–2013.CrossRefGoogle Scholar
  267. Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 2675–2703.CrossRefGoogle Scholar
  268. Williams, D. T., 1959: A theoretical estimate of draft velocities in a severe thunderstorm. Mon. Wea. Rev., 87, 65–68.CrossRefGoogle Scholar
  269. Williams, D. T., 1963: The thunderstorm wake of May 4, 1961. National Severe Storms Project Rep. 18, U.S. Dept. of Commerce, Washington, D.C., 23 pp. [NTIS PB 168223].Google Scholar
  270. Wilson, J. W., 1986: Tornadogenesis by nonprecipitation induced wind shear lines. Mon. Wea. Rev., 114, 270–284.CrossRefGoogle Scholar
  271. Wilson, J. W., and W. E. Schreiber, 1986: Initiation of convective storms at radar-observed boundary-layer convergence lines. Mon. Wea. Rev., 114, 2516–2536.CrossRefGoogle Scholar
  272. Wilson, J. W., and C. K. Mueller, 1993: Nowcasts of thunderstorm initia-tion and evolution. Wea. Forecasting, 8, 113–131.CrossRefGoogle Scholar
  273. Wilson, J. W., and D. L. Megenhardt, 1997: Thunderstorm initiation, organization, and lifetime associated with Florida boundary layer convergence lines. Mon. Wea. Rev., 125, 1507–1525.CrossRefGoogle Scholar
  274. Wilson, J. W., R. Carbone, H. Baynton, and R. Serafin, 1980: Operational application of meteorological Doppler radar. Bull. Amer. Meteor. Soc., 61, 1154–1168.CrossRefGoogle Scholar
  275. Wilson, J. W., R. D. Roberts, C. Kessinger, and J. McCarthy, 1984: Microburst wind structure and evaluation of Doppler radar for airport wind shear detection. J. Climate Appl. Meteor., 23, 898–915.CrossRefGoogle Scholar
  276. Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, C. K. Mueller, and S. K. Krueger, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 1785–1815.CrossRefGoogle Scholar
  277. Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 2079–2099.CrossRefGoogle Scholar
  278. Wolfson, M. M., J. T. Distefano, and T. T. Fujita, 1985: Low-altitude wind shear in the Memphis, TN area based on mesonet and LLWAS data. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 322–327.Google Scholar
  279. Wolfson, M. M., and Coauthors, 1990: Characteristics of thunderstorm-generated low altitude wind shear. 29th Conf. on Decision and Control, Honolulu, HI, IEEE, 682–688.Google Scholar
  280. Wolfson, M. M., R. L. Delanoy, B. E. Forman, R. G. Hallowell, M. L.Google Scholar
  281. Pawlak, and P. D. Smith, 1994: Automated microburst wind-shear prediction. Lincoln Lab. J., 7, 399–426.Google Scholar
  282. Yuter, S. E., and R. A. Houze Jr., 1995a: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 1921–1940.CrossRefGoogle Scholar
  283. Yuter, S. E., and, 1995b: Three-dimensional kinematic and mi-crophysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963.Google Scholar
  284. Zhang, D.-L., and K. Gao, 1989: Numerical simulation of intense squall line during 10–11 June 1985 PRE-STORM. Part II: Rear inflow, surface pressure perturbations and stratiform precipitation. Mon. Wea. Rev., 117, 2067–2094.CrossRefGoogle Scholar
  285. Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799–814.CrossRefGoogle Scholar
  286. Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line circulation. Mon. Wea. Rev., 105, 1568–1589.CrossRefGoogle Scholar
  287. Zipser, E. J., 1982: Use of a conceptual model of the life-cycle of mesoscale convective systems to improve very-short-range forecasts. Nowcasting, K. Browning, Ed., Academic Press, 191–204.Google Scholar

Copyright information

© American Meteorological Society 2001

Authors and Affiliations

  • Roger M. Wakimoto
    • 1
  1. 1.University of CaliforniaLos Angeles, Los AngelesUSA

Personalised recommendations