Advertisement

Tornadoes and Tornadic Storms

  • Robert Davies-Jones
  • R. Jeffrey Trapp
  • Howard B. Bluestein
Part of the Meteorological Monographs book series (METEOR)

Abstract

Tornadoes, with measured wind speeds of 125 m s−1 to perhaps 140 m s −1, are the most violent of atmospheric storms (Fig. 5.1). A tornado is defined here as a violently rotating, narrow column of air, averaging about 100 m in diameter, that extends to the ground from the interior of a cumulonimbus (or occasionally a cumulus congestus) cloud and appears as a condensation funnel pendant from cloud base and/or as a swirling cloud of dust and debris rising from the ground. Significant damage can occur at the ground even when the condensation funnel does not reach the surface. A condensation funnel associated with a tornadic vortex that fails to contact the ground is called a funnel cloud. A waterspout is a tornado over a body of water.

Keywords

Dust Devil Doppler Radar Vortex Breakdown Streamwise Vorticity Vertical Vorticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adlerman, E. J., K. K. Droegemeier, and R. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. J. Atmos. Sci., 56, 2045–2069.CrossRefGoogle Scholar
  2. Agee, E. M., 1969: Tornado Project activities at Purdue University. Bull. Amer. Meteor. Soc., 50, 806–807.Google Scholar
  3. Agee, E. M., 1970: Purdue tornado project activities—Part II. Bull. Amer. Meteor. Soc., 51, 951.Google Scholar
  4. Agee, E. M., J. T. Snow, and P. R. Clare, 1976: Multiple vortex features in the tornado cyclone and the occurrence of tornado families. Mon. Wea. Rev., 104, 552–563.CrossRefGoogle Scholar
  5. Atkins, N. T., M. L. Weisman, and L. J. Wicker, 1999: The influence of preexisting boundaries on supercell evolution. Mon. Wea. Rev., 127, 2910–2927.CrossRefGoogle Scholar
  6. Baker, G. L., and C. R. Church, 1979: Measurements of core radii and peak velocities in modeled atmospheric vortices. J. Atmos. Sci., 36, 2413–2424.CrossRefGoogle Scholar
  7. Barcilon, A., and P. G. Drazin, 1972: Dust devil formation. Geophys. Fluid Dyn., 4, 147–158.CrossRefGoogle Scholar
  8. Barnes, S. L., 1970: Some aspects of a severe, right-moving thunderstorm deduced from mesonet rawinsonde observations. J. Atmos. Sci., 27, 634–648.CrossRefGoogle Scholar
  9. Barnes, S. L., 1978: Oklahoma thunderstorms on 29–30 April 1970. Part I: Morphology of a tornadic storm. Mon. Wea. Rev., 106, 673–684.CrossRefGoogle Scholar
  10. Batchelor, G. K., 1967: An Introduction to Fluid Dynamics., Cambridge University Press, 615 pp.Google Scholar
  11. Bedard, A. J., Jr., and C. Ramzy, 1983: Surface meteorological observations in severe thunderstorms. Part I: Design details of TOTO. J. Climate Appl. Meteor., 22, 911–918.CrossRefGoogle Scholar
  12. Bergé, P., Y. Pomeau, and C. Vidal, 1984: Order Within Chaos., Wiley, 329 pp.Google Scholar
  13. Bieringer, P., and P. S. Ray, 1996: A comparison of tornado warning lead times with and without NEXRAD Doppler radar. Wea. Forecasting, 11, 47–52.CrossRefGoogle Scholar
  14. Binnie, A. M., and G. A. Hookings, 1948: Laboratory experiments on whirlpools. Proc. Roy. Soc. London A, 194, 348–415.CrossRefGoogle Scholar
  15. Bluestein, H. B., 1980: The University of Oklahoma Severe Storms Intercept Project-1979. Bull. Amer. Meteor. Soc., 61, 560–567.Google Scholar
  16. Bluestein, H. B., 1983a: Measurements in the vicinity of severe thunder-storms and tornadoes with TOTO: 1982–1983 results. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 89–92.Google Scholar
  17. Bluestein, H. B., 1983b: Surface meteorological observations in severe thun-derstorms. Part II: Field experiments with TOTO. J. Climate Appl. Meteor., 22, 919–930.CrossRefGoogle Scholar
  18. Bluestein, H. B., 1984: Photographs of the Canyon, TX storm on 26 MayGoogle Scholar
  19. Bluestein, H. B., 1978. Mon. Wea. Rev., 112, 2521–2523.CrossRefGoogle Scholar
  20. Bluestein, H. B., 1985a: The formation of a “landspout” in a “broken-line” squall line in Oklahoma. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 267–270.Google Scholar
  21. Bluestein, H. B., 1985b: Wall clouds with eyes. Mon. Wea. Rev., 113, 1081–1085.CrossRefGoogle Scholar
  22. Bluestein, H. B., 1986: Visual aspects of the flanking line in severe thunder-storms. Mon. Wea. Rev., 114, 788–795.CrossRefGoogle Scholar
  23. Bluestein, H. B., 1994: High-based funnel clouds in the Southern Plains. Mon. Wea. Rev., 122, 2631–2638.CrossRefGoogle Scholar
  24. Bluestein, H. B., 1996: 3-D stereo photography of supercell tornadoes. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 469–470.Google Scholar
  25. Bluestein, H. B., 1999a: A history of severe-storm intercept field programs. Wea. Forecasting, 14, 558–577.CrossRefGoogle Scholar
  26. Bluestein, H. B., 1999b: Tornado Alley: Monster Storms of the Great Plains., Oxford University Press, 180 pp.Google Scholar
  27. Bluestein, H. B., and C. Parks, 1983: A synoptic and photographic climatol-ogy of low-precipitation severe thunderstorms in the Southern Plains. Mon. Wea. Rev., 111, 2034–2046.CrossRefGoogle Scholar
  28. Bluestein, H. B., and W. P. Unruh, 1989: Observations of the wind field in tornadoes, funnel clouds, and wall clouds with a portable Doppler radar. Bull. Amer. Meteor. Soc., 70, 1514–1525.CrossRefGoogle Scholar
  29. Bluestein, H. B., and G. R. Woodall, 1990: Doppler-radar analysis of a low-precipitation severe storm. Mon. Wea. Rev., 118, 1640–1664.CrossRefGoogle Scholar
  30. Bluestein, H. B., and J. H. Golden, 1993: A review of tornado observations. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 319–352.CrossRefGoogle Scholar
  31. Bluestein, H. B., and W. P. Unruh, 1993: On the use of a portable FM-CW Doppler radar for tornado research. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 367–376.CrossRefGoogle Scholar
  32. Bluestein, H. B., and D. R. MacGorman, 1998: Evolution of cloud-to-ground lightning characteristics and storm structure in the Spearman, Texas, tornadic supercells of 31 May 1990. Mon. Wea. Rev., 126, 1451–1467.CrossRefGoogle Scholar
  33. Bluestein, H. B., and A. Pazmany, 2000: Observations of tornadoes and other convective phenomena with a mobile 3-mm wavelength, Doppler radar: The spring 1999 field experiment. Bull. Amer. Meteor. Soc., 81, 2939–2951.CrossRefGoogle Scholar
  34. Bluestein, H. B., W. P. Unruh, J. LaDue, H. Stein, and D. Speheger, 1993: Doppler-radar wind spectra of supercell tornadoes. Mon. Wea. Rev., 121, 2200–2221.CrossRefGoogle Scholar
  35. Bluestein, H. B., A. L. Pazmany, J. C. Galloway, and R. E. McIntosh, 1995: Studies of the substructure of severe convective storms using a mobile 3-mm wavelength Doppler radar. Bull. Amer. Meteor. Soc., 76, 2155–2169.CrossRefGoogle Scholar
  36. Bluestein, H. B., W. P. Unruh, D. C. Dowell, T. A. Hutchinson, T. M. Crawford, A. C. Wood, and H. Stein, 1997: Doppler radar analysis of the Northfield, Texas tornado of 25 May 1994. Mon. Wea. Rev., 125, 212–230.CrossRefGoogle Scholar
  37. Bluth, R. T., P. A. Durkee, J. H. Seinfeld, R. C. Flagan, L. M. Russell, P. A. Crowley, and P. Finn, 1996: Center for interdisciplinary remotely-piloted aircraft studies (CIRPAS). Bull. Amer. Meteor. Soc., 77, 2691–2699.CrossRefGoogle Scholar
  38. Bödewadt, U. T., 1940: Die Drehströmung fiber festem Grund. Z. Angew Math. Mech., 20, 241–253.CrossRefGoogle Scholar
  39. Borisenko, A. I., and I. E. Tarapov, 1979: Vector and Tensor Analysis with Applications., Dover, 257 pp.Google Scholar
  40. Brady, R. H., and E. J. Szoke, 1989: A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation. Mon. Wea. Rev., 117, 843–856.CrossRefGoogle Scholar
  41. Brandes, E. A., 1977: Gust front evolution and tornadogenesis as viewed by Doppler radar. J. Appl. Meteor., 16, 333–338.CrossRefGoogle Scholar
  42. Brandes, E. A., 1978: Mesocyclone evolution and tomadogenesis: Some observations. Mon. Wea. Rev., 106, 995–1011.CrossRefGoogle Scholar
  43. Brandes, E. A., 1981: Fine-structure of the Del City-Edmond tornado mesocirculation. Mon. Wea. Rev., 109, 635–647.CrossRefGoogle Scholar
  44. Brandes, E. A., 1984a: Relationships between radar-derived thermodynamic variables and tornadogenesis. Mon. Wea. Rev., 112, 1033–1052.CrossRefGoogle Scholar
  45. Brandes, E. A., 1984b: Vertical vorticity generation and mesocyclone sus-tenance in tornadic thunderstorms: The observational evidence. Mon. Wea. Rev., 112, 2253–2269.CrossRefGoogle Scholar
  46. Brandes, E. A., R. P. Davies-Jones, and B. C. Johnson, 1988: Streamwise vorticity effects on supercell morphology and persistence. J. Atmos. Sci., 45, 947–963.CrossRefGoogle Scholar
  47. Brock, F. V., G. Lesins, and R. Walko, 1987: Measurement of pressure and air temperature near severe thunderstorms: An inexpensive and portable instrument. Extended Abstracts, Sixth Symp. Meteorological Observations and Instrumentation, NewGoogle Scholar
  48. Orleans, LA, Amer. Meteor. Soc., 320–323.Google Scholar
  49. Brooks, H. E., and R. B. Wilhelmson, 1993: Hodograph curvature and updraft intensity in numerically modeled supercells. J. Atmos. Sci., 50, 1824–1833.CrossRefGoogle Scholar
  50. Brooks, H. E., C. A. Doswell III, and R. Davies-Jones, 1993: Environmen-tal helicity and the maintenance and evolution of low-level mesocyclones. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 97–104.CrossRefGoogle Scholar
  51. Brooks, H. E., and J. Cooper, 1994a: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606–618.CrossRefGoogle Scholar
  52. Brooks, H. E., and R. B. Wilhelmson, 1994b: The role of midtro-pospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122, 126–136.CrossRefGoogle Scholar
  53. Brown, J. M., and K. R. Knupp, 1980: The Iowa cyclonic-anticyclonic tornado pair and its parent thunderstorm. Mon. Wea. Rev., 108, 1626–1646.CrossRefGoogle Scholar
  54. Brown, R. A., D. W. Burgess, and K. C. Crawford, 1973: Twin tornado cyclones within a severe thunderstorm: Single Doppler radar observations. Weatherwise, 26, 63–71.CrossRefGoogle Scholar
  55. Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 29–39.CrossRefGoogle Scholar
  56. Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634–639.CrossRefGoogle Scholar
  57. Browning, K. A., 1986: Morphology and classification of middle latitude thunderstorms. Thunderstorm Morphology and Dynamics, 2d ed., E. Kessler, Ed., University of Oklahoma Press, 133–152.Google Scholar
  58. Browning, K. A., and C. R. Landry, 1963: Airflow within a tornadic thunderstorm. Preprints, 10th Weather Radar Conf, Washington, DC, Amer. Meteor. Soc., 116–122.Google Scholar
  59. Burgers, J. M., 1948: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech., 1, 197–199.Google Scholar
  60. Burgess, D. W., and R. P. Davies-Jones, 1979: Unusual tornadic storms in eastern Oklahoma on 5 December 1975. Mon. Wea. Rev., 107, 451–457.CrossRefGoogle Scholar
  61. Burgess, D. W., and L. R. Lemon, 1990: Severe thunderstorm detection by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 619–647.Google Scholar
  62. Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolu-tion statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 84–89.Google Scholar
  63. Burgess, D. W., S. V. Vasiloff, R. P. Davies-Jones, D. S. Zrnic, and S. E. Frederickson, 1985: Recent NSSL work on windspeed measurement in tornadoes. Proc. Fifth U.S. National Conf. of Wind Engineering, Lubbock, TX, Texas Tech University, 1A-531 A-60.Google Scholar
  64. Burggraf, O. R., and M. R. Foster, 1977: Continuation or breakdown in tornado-like vortices. J. Fluid Mech., 80, 685–703.CrossRefGoogle Scholar
  65. Burggraf, O. R., K. Stewartson, and R. Belcher, 1971: Boundary layer induced by a potential vortex. Phys. Fluids, 14, 1821–1833.CrossRefGoogle Scholar
  66. Carbone, R. E., 1983: A severe frontal rainband. Part II: Tornado parent vortex circulation. J. Atmos. Sci., 40, 2639–2654.CrossRefGoogle Scholar
  67. Chi, J., 1977: Numerical analysis of turbulent end-wall boundary layers of intense vortices. J. Fluid Mech., 82, 209–222.CrossRefGoogle Scholar
  68. Church, C. R., and J. T. Snow, 1979: The dynamics of natural tornadoes as inferred from laboratory simulations. J. Rech. Atmos., 12, 111–133.Google Scholar
  69. Church, C. R., and, 1985: Measurements of axial pressure in tornado-like vortices. J. Atmos. Sci., 42, 576–582.CrossRefGoogle Scholar
  70. Church, C. R., and, 1993: Laboratory models of tornadoes. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 277–295.CrossRefGoogle Scholar
  71. Church, C. R., and E. M. Agee, 1977: Tornado vortex simulation at Purdue University. Bull. Amer. Meteor. Soc., 58, 900–908.CrossRefGoogle Scholar
  72. Church, C. R., G. L. Baker, and E. M. Agee, 1979: Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci., 36, 1755–1776.CrossRefGoogle Scholar
  73. Church, C. R., D. Burgess, C. Doswell, and R. Davies-Jones, Eds., 1993: The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 637 pp.Google Scholar
  74. Concannon, P. R., H. E. Brooks, and C. A. Doswell III, 2000: Climatological risk of strong and violent tornadoes in the United States. Preprints, Second Conf. on Environmental Applications, Long Beach, CA, Amer. Meteor. Soc., 212–219.Google Scholar
  75. Cooley, J. R., 1978: Cold air funnel clouds. Mon. Wea. Rev., 106, 1368–1372.CrossRefGoogle Scholar
  76. Darkow, G. L., 1971: Periodic tornado production by long-lived parent thunderstorms. Preprints, Seventh Conf. on Severe Local Storms, Kansas City, MO, Amer. Meteor. Soc., 214–217.Google Scholar
  77. Davies, J. M., 1993a: Hourly helicity, instability and EHI in forecasting supercell tornadoes. Preprints, 17th Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 56–60.Google Scholar
  78. Davies, J. M., 1993b: Small tornadic supercells in the central Plains. Preprints, 17th Conf. Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., 305–309.Google Scholar
  79. Davies-Jones, R. P., 1973: The dependence of core radius on swirl ratio in a tornado simulator. J. Atmos. Sci., 30, 1427–1430.CrossRefGoogle Scholar
  80. Davies-Jones, R. P., 1976: Laboratory simulations of tornadoes. Proc. Symp. On Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech University, 151–174.Google Scholar
  81. Davies, J. M., 1982: Observational and theoretical aspects of tornadogenesis. Intense Atmospheric Vortices, L. Bengtsson and J. Light-hill, Eds., Springer-Verlag, 175–189.CrossRefGoogle Scholar
  82. Davies, J. M., 1983: Tornado interception with mobile teams. Instruments and Techniques for Thunderstorm Observation and Analysis. Vol. III, Thunderstorms: A Social, Scientific, and Technological Documentary, E. Kessler, Ed., University of Oklahoma Press, 23–32.Google Scholar
  83. Davies, J. M., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 2991–3006.CrossRefGoogle Scholar
  84. Davies, J. M., 1985: Dynamical interaction between an isolated convec-tive cell and a veering environmental wind. Preprints, 14th Conf. on Severe Local Storms, Indianapolis, IN, Amer. Meteor. Soc., 216–219.Google Scholar
  85. Davies, J. M., 1986: Tornado dynamics. Thunderstorm Morphology and Dynamics, 2d ed., E. Kessler, Ed., University of Oklahoma Press, 197–236.Google Scholar
  86. Davies, J. M., 1995: Tornadoes. Sci. Amer., 273, (2), 34–41.CrossRefGoogle Scholar
  87. Davies, J. M., 1996a: Formulas for the barotropic and baroclinic compo-nents of vorticity with applications to vortex formation near the ground. Preprints, Seventh Conf. on Mesoscale Processes, Reading, UK, Amer. Meteor. Soc., 14–16.Google Scholar
  88. Davies, J. M., 1996b: Inclusion of boundary conditions on pressure in conceptual models of updraft-environment interaction. Preprints, 18th Conf. Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 713–717.Google Scholar
  89. Davies, J. M., 2000a: A Lagrangian model for baroclinic genesis of mesoscale vortices. Part I: Theory. J. Atmos. Sci., 57, 715–736.CrossRefGoogle Scholar
  90. Davies, J. M., 2000b: Can the hook echo instigate tornadogenesis baro-tropically? Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 269–272.Google Scholar
  91. Davies, J. M., and E. Kessler, 1974: Tornadoes. Weather and Climate Modification, W. N. Hess, Ed., Wiley, 552–595.Google Scholar
  92. Davies, J. M., and H. E. Brooks, 1993: Mesocyclogenesis from a theoret-ical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 105–114.CrossRefGoogle Scholar
  93. Davies, J. M., D. W. Burgess, L. R. Lemon, and D. Purcell, 1978: Interpretation of surface marks and debris patterns from the 24 May 1973 Union City, Oklahoma, tornado. Mon. Wea. Rev., 106, 12–21.CrossRefGoogle Scholar
  94. Davies, J. M., D. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.Google Scholar
  95. Donaldson, R. J., and W. E. Lamkin, 1964: Visual observations beneath a developing tornado. Mon. Wea. Rev., 92, 326–328. Donaldson, R. J., Jr., 1970: Vortex signature recognition by a Doppler radar. J. Appl. Meteor., 9, 661–670.CrossRefGoogle Scholar
  96. Davies, J. M., 1990: Foundations of severe storm detection by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 115–121.Google Scholar
  97. Doswell, C. A., III, and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495–501.CrossRefGoogle Scholar
  98. Doswell, C. A., III, and D. W. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 161–172.CrossRefGoogle Scholar
  99. Doswell, C. A., III, and T. P. Grazulis, 1998: A demonstration of vortex configurations in an inexpensive tornado simulator. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 85–88.Google Scholar
  100. Doswell, C. A., III, A. R. Moller, and H. E. Brooks, 1999: Storm spotting and public awareness since the first tornado forecasts of 1948. Wea. Forecasting, 14, 544–557.CrossRefGoogle Scholar
  101. Doviak, R. J., and D. S. Zrnié, 1993: Doppler Radar and Weather Observations., Academic Press, 562 pp.Google Scholar
  102. Dowell, D. C., and H. B. Bluestein, 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornado-genesis. Mon. Wea. Rev., 125, 2562–2582.CrossRefGoogle Scholar
  103. Dowell, D. C., and, 2000: Conceptual models of cyclic supercell tornadogenesis. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 259–262.Google Scholar
  104. Dowell, D. C., and D. P. Jorgensen, 1997: Airborne Doppler radar analysis of supercells during COPS-91. Mon. Wea. Rev., 125, 365–383.CrossRefGoogle Scholar
  105. Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 2005–2029.CrossRefGoogle Scholar
  106. Dutton, J. A., 1976: The Ceaseless Wind., McGraw-Hill, 579 pp. Emanuel, K. A., 1994: Atmospheric Convection., Oxford University Press, 580 pp.Google Scholar
  107. Eskridge, R. E., and P. Das, 1976: Effect of a precipitation-driven downdraft on a rotating wind field: A possible trigger mechanism for tornadoes? J. Atmos. Sci., 33, 70–84.CrossRefGoogle Scholar
  108. Faller, A. J., 1963: An experimental study of the instability of the laminar Ekman layer. J. Fluid Mech., 15, 560–576.CrossRefGoogle Scholar
  109. Fiedler, B. H., 1989: Conditions for laminar flow in geophysical vortices. J. Atmos. Sci., 46, 252–259.CrossRefGoogle Scholar
  110. Fiedler, B. H., 1993: Numerical simulations of axisymmetric tornadogen-esis in forced convection. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 41–48.CrossRefGoogle Scholar
  111. Fiedler, B. H., 1994: The thermodynamic speed limit and its violation in axisymmetric numerical simulations of tornado-like vortices. Atmos.—Ocean, 32, 335–359.CrossRefGoogle Scholar
  112. Fiedler, B. H., 1995: On modeling tornadoes in isolation from the parent storm. Atmos.—Ocean, 33, 501–512.CrossRefGoogle Scholar
  113. Fiedler, B. H., and R. Rotunno, 1986: A theory for the maximum wind-speeds in tornado-like vortices. J. Atmos. Sci., 43, 2328–2340.CrossRefGoogle Scholar
  114. Forbes, G. S., 1976: Photogrammetric characteristics of the Parker tornado of April 3, 1974. Proc. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech University, 58–77.Google Scholar
  115. Forbes, G. S., 1978: Three scales of motion associated with tornadoes. U.S. Nuclear Regulatory Commission Contract Rep. NUREG/CR-0363, 359 pp.Google Scholar
  116. Fujita, T. T., 1958: Tornado cyclone: bearing system of tornadoes. Proc. Seventh Weather Radar Conf, Miami Beach, FL, Amer. Meteor. Soc., K31 — K38.Google Scholar
  117. Fujita, T. T., 1959: Detailed analysis of the Fargo tornadoes of June 20, 1957. U.S. Weather Bureau Tech. Rep. 5, Severe Local Storms Project, University of Chicago, 29 pp. plus figures.Google Scholar
  118. Fujita, T. T., 1963: Analytical mesometeorology: A review. Severe Local Storms, Meteor. Monogr., No. 27, Amer. Meteor. Soc., 77–125.Google Scholar
  119. Fujita, T. T., 1973: Tornadoes around the world. Weatherwise, 26, 56–62 78–83.Google Scholar
  120. Fujita, T. T., 1981: Tornadoes and downbursts in the context of general-ized planetary scales. J. Atmos. Sci., 38, 1511–1534.CrossRefGoogle Scholar
  121. Fujita, T. T., 1985: The downburst. Satellite and Mesometeorology Research Project (SMRP), Dept. of Geophysical Sciences, University of Chicago, 122 pp.Google Scholar
  122. Fujita, T. T., 1993: Plainfield tornado of August 28, 1990. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr. No. 79, Amer. Geophys. Union, 1–17.CrossRefGoogle Scholar
  123. Fujita, T. T., and R. M. Wakimoto, 1982: Anticyclonic tornadoes in 1980 and 1981. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 401–404.Google Scholar
  124. Fujita, T. T., and B. E. Smith, 1993: Aerial surveys and photography of tornado and microburst damage. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 479–493.CrossRefGoogle Scholar
  125. Fujita, T. T., G. S. Forbes, and T. A. Umenhofer, 1976: Close-up view of 20 March 1976 tornadoes: Sinking cloud tops to suction vortices. Weatherwise, 29, 116–131, 145.Google Scholar
  126. Garrett, R. A., and V. D. Rockney, 1962: Tornadoes in northeastern Kansas, 19 May 1960. Mon. Wea. Rev., 90, 231–240.CrossRefGoogle Scholar
  127. Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943–958.CrossRefGoogle Scholar
  128. Golden, J. H., 1974a: The life-cycle of Florida Keys’ waterspouts, I. J. Appl. Meteor., 13, 676–692.CrossRefGoogle Scholar
  129. Golden, J. H., 1974b: Scale-interaction implications for the waterspout life cycle. II. J. Appl. Meteor., 13, 693–709.CrossRefGoogle Scholar
  130. Golden, J. H., 1976: An assessment of wind speeds in tornadoes. Proc. Symp. on Tornadoes, Lubbock, TX, Texas Tech University, 5–42.Google Scholar
  131. Golden, J. H., and B. J. Morgan, 1972: The NSSL/Notre Dame tornado intercept program, spring 1972. Bull. Amer. Meteor. Soc., 53, 1178–1180.Google Scholar
  132. Golden, J. H., and D. Purcell, 1978a: Airflow characteristics around the Union City tornado. Mon. Wea. Rev., 106, 22–28.CrossRefGoogle Scholar
  133. Golden, J. H., and, 1978b: Life-cycle of the Union City, OK tornado and comparison with waterspouts. Mon. Wea. Rev., 106, 3–11.CrossRefGoogle Scholar
  134. Grasso, L. D., and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci., 52, 1192–1203.CrossRefGoogle Scholar
  135. Grazulis, T. P., 1993: Significant Tornadoes 1680–1991., Environmental Films, 1326 pp.Google Scholar
  136. Hane, C. E., and P. S. Ray, 1985: Pressure and buoyancy fields derived from Doppler radar in a tornadic thunderstorm. J. Atmos. Sci., 42, 18–35.CrossRefGoogle Scholar
  137. Harlow, F. H., and L. R. Stein, 1974: Structural analysis of tornado-like vortices. J. Atmos. Sci., 31, 2081–2098.CrossRefGoogle Scholar
  138. Heymsfield, G. M., 1978: Kinematic and dynamic aspects of the Harrah tornadic storm analyzed from dual-Doppler radar data. Mon. Wea. Rev., 106, 233–254.CrossRefGoogle Scholar
  139. Hoecker, W. H., 1960: Wind speed and airflow patterns in the Dallas tornado of April 2 1957. Mon. Wea. Rev., 88, 167–180.CrossRefGoogle Scholar
  140. Holle, R. L., and M. W. Maier, 1980: Tornado formation from downdraft interaction in the FACE network. Mon. Wea. Rev., 108, 1010–1028.CrossRefGoogle Scholar
  141. Howard, L. N., and A. S. Gupta, 1962: On the hydrodynamic and hydromagnetic stability of swirling flows. J. Fluid Mech., 14, 463–476.CrossRefGoogle Scholar
  142. Howells, P. A. C., R. Rotunno, and R. K. Smith, 1988: A comparative study of atmospheric and laboratory-analogue numerical tornado-vortex models. Quart. J. Roy. Meteor. Soc., 114, 801–822.CrossRefGoogle Scholar
  143. Istok, M. J., and R. J. Doviak, 1986: Analysis of the relation between Doppler spectral width and thunderstorm turbulence. J. Atmos. Sci., 43, 2199–2214.CrossRefGoogle Scholar
  144. Jensen, B., T. P. Marshall, M. A. Mabey, and E. N. Rasmussen, 1983: Storm scale structure of the Pampa storm. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., 85–88.Google Scholar
  145. Johnson, B. C., and C. L. Ziegler, 1984: Doppler observations and retrieved thermal and microphysical variables for the Binger tornadic storm. Preprints, 22d Weather Radar Conf, Zurich, Switzerland, Amer. Meteor. Soc., 31–36.Google Scholar
  146. Johnson, K. W., P. S. Ray, B. C. Johnson, and R. P. Davies-Jones, 1987: Observations related to the rotational dynamics of the 20 May 1977 tornadic storms. Mon. Wea. Rev., 115, 2463–2478.CrossRefGoogle Scholar
  147. Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. J. Meteor. Atmos. Phys., 59, 83–104.CrossRefGoogle Scholar
  148. Kanak, K. M., and D. K. Lilly, 1996: The linear stability and structure of convection in a mean circular shear. J. Atmos. Sci., 53, 2578–2593.CrossRefGoogle Scholar
  149. Kennedy, P. C., N. E. Westcott, and R. W. Scott, 1993: Single-Doppler radar observations of a mini-supercell tornadic thunderstorm. Mon. Wea. Rev., 121, 1860–1870.CrossRefGoogle Scholar
  150. Kessler, E., Ed., 1986: Thunderstorm Morphology and Dynamics., 2d ed. University of Oklahoma Press, 411 pp.Google Scholar
  151. Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Ann. Rev. Fluid Mech., 19, 369–402.CrossRefGoogle Scholar
  152. Klemp, J. B., and R. Rotunno, 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359–377.CrossRefGoogle Scholar
  153. Klemp, J. B., R. B. Wilhelmson, and P. S. Ray, 1981: Observed and numerically simulated structure of a mature supercell thunderstorm. J. Atmos. Sci., 38, 1558–1580.CrossRefGoogle Scholar
  154. Kuo, H. L., 1966: On the dynamics of convective atmospheric vortices. J. Atmos. Sci., 23, 25–42.CrossRefGoogle Scholar
  155. Kuo, H. L., 1967: Note on the similarity solutions of the vortex equations in an unstably stratified atmosphere. J. Atmos. Sci., 24, 95–97.CrossRefGoogle Scholar
  156. Laroche, S., and I. Zawadsky, 1994: A variational analysis method for the retrieval of three-dimensional wind field from single-Doppler data. J. Atmos. Sci., 51, 2664–2682.CrossRefGoogle Scholar
  157. Lee, B. D., and R. B. Wilhelmson, 1997: The numerical simulation of nonsupercell tornadogenesis. Part II: Evolution of a family of tornadoes along a weak outflow boundary. J. Atmos. Sci., 54, 2387–2415.CrossRefGoogle Scholar
  158. Lemon, L. R., and C. A. Doswell III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 1184–1197.CrossRefGoogle Scholar
  159. Lemon, L. R., D. W. Burgess, and R. A. Brown, 1978: Tornadic storm airflow and morphology derived from single-Doppler radar measurements. Mon. Wea. Rev., 106, 48–61.CrossRefGoogle Scholar
  160. Leslie, F. W., 1977: Surface roughness effects on suction vortex forma-tion: A laboratory simulation. J. Atmos. Sci., 34, 1022–1027.CrossRefGoogle Scholar
  161. Leslie, L. M., 1971: The development of concentrated vortices: A numerical study. J. Fluid Mech., 48, 1–21.CrossRefGoogle Scholar
  162. Lewellen, D. C., W. S. Lewellen, and J. Xia, 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527–544.CrossRefGoogle Scholar
  163. Lewellen, W. S., 1976: Theoretical models of the tornado vortex. Proc. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech University, 107–143.Google Scholar
  164. Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 19–39.CrossRefGoogle Scholar
  165. Lewellen, W. S., and Y. P. Sheng, 1980: Modeling tornado dynamics. U.S. Nuclear Regulation Committee Rep. NUREG/CR-2585, Washington, DC.Google Scholar
  166. Lewellen, W. S., D. C. Lewellen, and R. I. Sykes, 1997: Large-eddy simula-tion of a tornado’s interaction with the surface. J. Atmos. Sci., 54, 581–605.CrossRefGoogle Scholar
  167. Lilly, D. K., 1969: Tornado dynamics. NCAR Manuscript 69–117. [Available from National Center for Atmospheric Research, P.O. Box 3000 Boulder, CO 80307–3000.]Google Scholar
  168. Lilly, D. K., 1976: Sources of rotation and energy in the tornado. Proc. Symp. on Tornadoes: Assessment of Knowledge and Implica-, tions for Man, Lubbock, TX, Texas Tech University, 145–150.Google Scholar
  169. Lilly, D. K., 1982: The development and maintenance of rotation in convective storms. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 149–160.CrossRefGoogle Scholar
  170. Lilly, D. K., 1983: Dynamics of rotating thunderstorms. Mesoscale Me-teorology—Theories, Observations and Models, D. K. Lilly and T. Gal-Chen, Eds., Reidel, 531–543.CrossRefGoogle Scholar
  171. Lilly, D. K., 1986: The structure, energetics and propagation of rotating convective storms. Part I: Energy exchange with the mean flow. J. Atmos. Sci., 43, 113–125.CrossRefGoogle Scholar
  172. Long, R. R., 1958: Vortex motion in a viscous fluid. J. Meteor., 15, 108–112.CrossRefGoogle Scholar
  173. Maddox, R. A., J. R. Hoxit, and C. F. Chappell, 1980: Study of tornadic thunderstorm interactions with thermal boundaries. Mon. Wea. Rev., 108, 322–336.CrossRefGoogle Scholar
  174. Magsig, M. A., and J. T. Snow, 1998: Long-distance debris transport by tornadic thunderstorms. Part I: The 7 May 1995 supercell thunderstorm. Mon. Wea. Rev., 126, 1430–1449.CrossRefGoogle Scholar
  175. Markowski, P. M., 2000: Surface thermodynamic characteristics of RFDs as measured by a mobile mesonet. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 251–254.Google Scholar
  176. Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 1998a: A preliminary investigation of the importance of helicity location in the hodograph. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 230–233.Google Scholar
  177. Markowski, P. M., E. N. Rasmussen, and J. M. Straka, 1998b: The occurrence of tornadoes in supercells interacting with boundaries during VORTEX-95. Wea. Forecasting, 13, 852–859.CrossRefGoogle Scholar
  178. Maxworthy, T., 1972: On the structure of concentrated columnar vortices. Astronaut. Acta, 17, 363–374.Google Scholar
  179. Maxworthy, T., 1973: Vorticity source for large scale dust devils and other comments on naturally occurring vortices. J. Atmos. Sci., 30, 1717–1720.CrossRefGoogle Scholar
  180. Maxworthy, T., 1982: The laboratory modelling of atmospheric vortices: A critical review. Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill, Eds., Springer-Verlag, 229–246.CrossRefGoogle Scholar
  181. McCaul, E. W., 1993: Observations and simulations of hurricane-spawned tornadic storms. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr. No. 79, Amer. Geophys. Union, 119–142.CrossRefGoogle Scholar
  182. Moller, A., 1978: The improved NWS storm spotters’ training program at Ft. Worth, Tex. Bull. Amer. Meteor. Soc., 59, 1574–1582.CrossRefGoogle Scholar
  183. Moller, A., C. Doswell, J. McGinley, S. Tegtmeier, and R. Zipser, 1974: Field observations of the Union City tornado in Oklahoma. Weatherwise, 27, 68–77.CrossRefGoogle Scholar
  184. Morton, B. R., 1966: Geophysical vortices. Progr. Aeronaut. Sci., 7, 145–193.CrossRefGoogle Scholar
  185. Moller, A., 1969: The strength of vortex and swirling core flows. J. Fluid Mech., 38, 315–333.CrossRefGoogle Scholar
  186. Mullen, J. B., and T. Maxworthy, 1977: A laboratory model of dust devil vortices. Dyn. Atmos. Oceans, 1, 181–214.CrossRefGoogle Scholar
  187. Newton, C. W., and H. R. Newton, 1959: Dynamical interactions between large convective clouds and environment with vertical shear. J. Meteor., 16, 483–496.CrossRefGoogle Scholar
  188. Novlan, D. J., and W. M. Gray, 1974: Hurricane-spawned tornadoes. Mon. Wea. Rev., 102, 476–488.CrossRefGoogle Scholar
  189. Pauley, R. L., 1989: Laboratory measurements of axial pressure in two-celled tornado-like vortices. J. Atmos. Sci., 46, 3392–3399.CrossRefGoogle Scholar
  190. Pauley, R. L., and J. T. Snow, 1988: On the kinematics and dynamics of the 18 June 1986 Minneapolis tornado. Mon. Wea. Rev., 116, 2731–2736.CrossRefGoogle Scholar
  191. Pauley, R. L., C. R. Church, and J. T. Snow, 1982: Measurements of maximum surface pressure deficits in modeled atmospheric vortices. J. Atmos. Sci., 39, 369–377.CrossRefGoogle Scholar
  192. Peterson, R. E., Ed., 1976: Proc. Symp. on Tornadoes: Assessment of Knowledge and Implications for Man, Lubbock, TX, Texas Tech University, 696 pp.Google Scholar
  193. Pfost, R. L., and A. E. Gerard, 1997: “Bookend vortex” induced tornadoes along the Natchez Trace. Wea. Forecasting, 12, 572–580.Google Scholar
  194. Proctor, F. H., 1988: Numerical solution of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci., 45, 3137–3160.CrossRefGoogle Scholar
  195. Qui, C.-J., and Q. Xu, 1992: A simple adjoint method of wind analysis for single-Doppler radar. J. Atmos. Oceanic Technol., 9, 588–598.CrossRefGoogle Scholar
  196. Rasmussen, E. N., 1995: VORTEX operations plan. 141 pp. [Available from the National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069.]Google Scholar
  197. Rasmussen, E. N., and R. B. Wilhelmson, 1983: Relationships between storm characteristics and 1200 GMT hodographs. low-level shear, and stability. Preprints, 13th Conf. on Severe Local Storms, Tulsa, OK, Amer. Meteor. Soc., J5 — J8.Google Scholar
  198. Rasmussen, E. N., and J. M. Straka, 1996: Mobile mesonet observations of tornadoes during VORTEX-95. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 1–5.Google Scholar
  199. Rasmussen, E. N., and, 1998: Variations in supercell morphology. Part I: Observations of the role of upper-level storm-relative flow. Mon. Wea. Rev., 126, 2406–2421.CrossRefGoogle Scholar
  200. Rasmussen, E. N., R. Davies-Jones, C. A. Doswell, F. H. Carr, M. D. Eilts, and D. R. MacGorman, 1994: Verification of the origins of rotation in tornadoes experiment: VORTEX. Bull. Amer. Meteor. Soc., 75, 995–1006.CrossRefGoogle Scholar
  201. Rasmussen, E. N., S. Richardson, J. M. Straka, P. M. Markowski, and D. O. Blanchard, 2000: The association of significant tornadoes with a baroclinic boundary on 2 June 1995. Mon. Wea. Rev., 128, 174–191.CrossRefGoogle Scholar
  202. Ray, P. S., and M. Stephenson, 1990: Assessment of the geometric and temporal errors associated with airborne Doppler radar measurements of a convective storm. J. Atmos. Oceanic Technol., 7, 206–217.CrossRefGoogle Scholar
  203. Ray, P. S., C. L. Ziegler, W. Bumgarner, and R. J. Serafin, 1980: Single- and multiple-Doppler radar observations of tornadic storms. Mon. Wea. Rev., 108, 1607–1625.CrossRefGoogle Scholar
  204. Ray, P. S., B. C. Johnson, K. W. Johnson, J. S. Bradberry, J. J. Stephens, K. K. Wagner, R. B. Wilhelmson, and J. B. KlempGoogle Scholar
  205. Ray, P. S., 1981: The morphology of several tornadic storms on 20 May 1977. J. Atmos. Sci., 38, 1643–1663.CrossRefGoogle Scholar
  206. Rayleigh, Lord, 1916: On the dynamics of revolving fluids. Proc. Roy. Soc. London A, 93, 148–154.CrossRefGoogle Scholar
  207. Rothfusz, L. P., and D. K. Lilly, 1989: Quantitative and theoretical analysis of an experimental helical vortex. J. Atmos. Sci., 46, 2265–2279.CrossRefGoogle Scholar
  208. Rott, N., 1958: On the viscous core of a line vortex. Z. Angew. Math. Physik, 96, 543–553.CrossRefGoogle Scholar
  209. Rotunno, R., 1977: Numerical simulation of a laboratory vortex. J. Atmos. Sci., 34, 1942–1956.CrossRefGoogle Scholar
  210. Rotunno, R., 1978: A note on the stability of a cylindrical vortex sheet. J. Fluid Mech., 87, 761–771.CrossRefGoogle Scholar
  211. Rotunno, R., 1979: A study in tornado-like vortex dynamics. J. Atmos. Sci., 36, 140–155.CrossRefGoogle Scholar
  212. Rotunno, R., 1981: On the evolution of thunderstorm rotation. Mon. Wea. Rev., 109, 577–586.CrossRefGoogle Scholar
  213. Rotunno, R., 1984: An investigation of a three-dimensional asymmetric vortex. J. Atmos. Sci., 41, 283–298.CrossRefGoogle Scholar
  214. Rotunno, R., 1986: Tornadoes and tornadogenesis. Mesoscale Meteorol-ogy and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 414–436.Google Scholar
  215. Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136–151.CrossRefGoogle Scholar
  216. Rotunno, R., and, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271–292.CrossRefGoogle Scholar
  217. Saffman, P. G., 1992: Vortex Dynamics., Cambridge University Press, 311 pp.Google Scholar
  218. Schlesinger, R. E., 1978: A three-dimensional model of an isolated thunderstorm: Part I. Comparative experiments for variable ambient wind shear. J. Atmos. Sci., 35, 690–713.CrossRefGoogle Scholar
  219. Schlichting, H., 1960: Boundary Layer Theory., 4th ed. McGraw-Hill, 647 pp.Google Scholar
  220. Scorer, R. S., 1978: Environmental Aerodynamics., Ellis Horwood, 488 pp.Google Scholar
  221. Shapiro, A. H., 1972: Vorticity. Illustrated Experiments in Fluid Mechanics, The National Committee for Fluid Mechanics Films Book of Film Notes, The MIT Press, 63–74.Google Scholar
  222. Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 1265–1287.CrossRefGoogle Scholar
  223. Smith, D. R., 1987: Effect of boundary conditions on numerically simulated vortices. J. Atmos. Sci., 44, 648–656.CrossRefGoogle Scholar
  224. Smith, R. K., and L. M. Leslie, 1978: Tornadogenesis. Quart. J. Roy. Meteor. Soc., 104, 189–199.CrossRefGoogle Scholar
  225. Smith, R. K., and, 1979: A numerical study of tornadogenesis in a rotating thunderstorm. Quart. J. Roy. Meteor. Soc., 105, 107–127.CrossRefGoogle Scholar
  226. Smith, R. L., and D. W. Holmes, 1961: Use of Doppler radar in meteorological observations. Mon. Wea. Rev., 89, 1–7.CrossRefGoogle Scholar
  227. Snow, J. T., 1982: A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys., 20, 953–964.CrossRefGoogle Scholar
  228. Snow, J. T., 1984: The Tornado. Sci. Amer., 250 (4), 56–66.CrossRefGoogle Scholar
  229. Snow, J. T., and R. L. Pauley, 1984: On the thermodynamic method for estimating tornado windspeeds. J. Climate Appl. Meteor., 23, 1465–1468.CrossRefGoogle Scholar
  230. Snow, J. T., C. R. Church, and B. J. Barnhart, 1980: An investigation of the surface pressure fields beneath simulated tornado cyclones. J. Atmos. Sci., 37, 1013–1026.CrossRefGoogle Scholar
  231. Snow, J. T., A. L. Wyatt, A. K. McCarthy, and E. K. Bishop, 1995: Fallout of debris from tornadic thunderstorms: An historical perspective and two examples from VORTEX. Bull. Amer. Meteor. Soc., 76, 1777–1790.CrossRefGoogle Scholar
  232. Sreenivasan, K. R., 1985: Transition and turbulence in fluid flows and low-dimensional chaos. Frontiers in Fluid Mechanics, S. H. Davis and J. L. Lumley, Eds., Springer-Verlag. 41–67.CrossRefGoogle Scholar
  233. Straka, J. M., E. N. Rasmussen, and S. E. Fredrickson, 1996: A mobile mesonet for finescale meteorological observations. J. Atmos. Oceanic Technol., 13, 921–936.CrossRefGoogle Scholar
  234. Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304–326.CrossRefGoogle Scholar
  235. Sullivan, R. D., 1959: A two-cell vortex solution of the NavierStokes equations. J. Aerospace Sci., 26, 767–768.CrossRefGoogle Scholar
  236. Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.CrossRefGoogle Scholar
  237. Sun, J., and, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852.Google Scholar
  238. Taylor, E. S., 1972: Secondary flow. Illustrated Experiments in Fluid Mechanics, The National Committee for Fluid Mechanics Films Book of Film Notes, The MIT Press, 97–104.Google Scholar
  239. Trapp, R. J., 1999: Observations of nontornadic low-level mesocyclones and attendant tornadogenesis failure during VORTEX. Mon. Wea. Rev., 127, 1693–1705.CrossRefGoogle Scholar
  240. Trapp, R. J., 2000: A clarification of vortex breakdown and tornadogen-esis. Mon. Wea. Rev., 128, 888–895.CrossRefGoogle Scholar
  241. Trapp, R. J., and B. H. Fiedler, 1995: Tornado-like vortexgenesis in a simplified numerical model. J. Atmos. Sci., 52, 3757–3778.CrossRefGoogle Scholar
  242. Trapp, R. J., and R. Davies-Jones, 1997: Tornadogenesis with and with- out a dynamic pipe effect. J. Atmos. Sci., 54, 113–133.CrossRefGoogle Scholar
  243. Trapp, R. J., E. D. Mitchell, G. A. Tipton, D. A. Effertz, A. I. Watson, D. L. Andra, and M. A. Magsig, 1999: Descending and nondescending tornadic vortex signatures detected by WSR88D’s. Wea. Forecasting, 14, 625–639.CrossRefGoogle Scholar
  244. Truesdell, C., 1954: The Kinematics of Vorticity., Indiana University Press, 232 pp.Google Scholar
  245. Tuttle, J. D., and G. B. Foote, 1990: Determination of the boundary-layer airflow from a single Doppler radar. J. Atmos. Oceanic Technol., 7, 218–232.CrossRefGoogle Scholar
  246. Wakimoto, R. M., and J. W. Wilson, 1989: Non-supercell tornadoes. Mon. Wea. Rev., 117, 1113–1140.CrossRefGoogle Scholar
  247. Wakimoto, R. M., and B. E. Martner, 1992: Observations of a Colorado tornado. Part II: Combined photogrammetric and Doppler radar analysis. Mon. Wea. Rev., 120, 522–543.CrossRefGoogle Scholar
  248. Wakimoto, R. M., and N. T. Atkins, 1996: Observations on the origins of rotation: The Newcastle tornado during VORTEX 94. Mon. Wea. Rev., 124, 384–407.CrossRefGoogle Scholar
  249. Wakimoto, R. M., and C. Liu, 1998: The Garden City, Kansas, storm during VORTEX 95. Part II: The wall cloud and tornado. Mon. Wea. Rev., 126, 393–408.CrossRefGoogle Scholar
  250. Wakimoto, R. M., and H. Cai, 2000: Analysis of a nontornadic storm during VORTEX 95. Mon. Wea. Rev., 128, 565–592.CrossRefGoogle Scholar
  251. Wakimoto, R. M., W. C. Lee, H. B. Bluestein, C.-H. Liu, and P. H. Hilde-brand, 1996: ELDORA observations during VORTEX 95. Bull. Amer. Meteor. Soc., 77, 1465–1481.CrossRefGoogle Scholar
  252. Wakimoto, R. M., C. Liu, and H. Cai, 1998: The Garden City, Kansas, storm during VORTEX 95. Part I: Overview of the storm’s life cycle and mesocyclogenesis. Mon. Wea. Rev., 126, 372–392.CrossRefGoogle Scholar
  253. Walko, R. L., 1988: Plausibility of substantial dry adiabatic subsi- dence in a tornado core. J. Atmos. Sci., 45, 2251–2267.CrossRefGoogle Scholar
  254. Walko, R. L., 1993: Tornado spin-up beneath a convective cell: Required basic structure of the near-field boundary layer winds. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., No. 79, Amer. Geophys. Union, 89–95.CrossRefGoogle Scholar
  255. Ward, N. B., 1972: The exploration of certain features of tornado dynamics using a laboratory model. J. Atmos. Sci., 29, 1194–1204.CrossRefGoogle Scholar
  256. Ward, N. B., and A. B. Arnett Jr., 1963: Some relations between surface wind fields and radar echoes. Conf. Review, Third Conf. on Severe Local Storms, Urbana, IL, Amer. Meteor. Soc.Google Scholar
  257. Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504–520.CrossRefGoogle Scholar
  258. Weisman, M. L., and, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 2479–2498.CrossRefGoogle Scholar
  259. Weygandt, S. S., A. Shapiro, and K. K. Droegemeier, 1998: The use of wind and thermodynamic retrievals to create initial forecast fields from single-Doppler observations of a supercell thunderstorm. Preprints, 16th Conf. on Weather Analysis and Forecasting, Phoenix, AZ, Amer. Meteor. Soc., 286–288.Google Scholar
  260. Wicker, L. J., 1996: The role of near surface wind shear on low-level mesocyclone generation and tornadoes. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 115–119.Google Scholar
  261. Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 2675–2703.CrossRefGoogle Scholar
  262. Wiin-Nielsen, A., 1973: Compendium of Meteorology for Class I and II Personnel. Vol. 1, Part 1, Dynamic Meteorology, World Meteorological Organization, Geneva, 334 pp.Google Scholar
  263. Wilczak, J. M., T. W. Christian, D. E. Wolfe, R. J. Zamora, and B. Stankov, 1992: Observations of a Colorado tornado. Part I: Mesoscale environment and tornadogenesis. Mon. Wea. Rev., 120, 497–520.CrossRefGoogle Scholar
  264. Wilhelmson, R. B., and J. B. Klemp, 1978: A numerical study of storm splitting that leads to long-lived storms. J. Atmos. Sci., 35, 1974–1986.CrossRefGoogle Scholar
  265. Wilkins, E. M., 1988: Influence of Neil Ward’s simulator on tornado research. CIMMS Rep. 87, Cooperative Institute for Mesoscale Meteorological Studies, 64 pp.Google Scholar
  266. Wilkins, E. M., and C. J. Diamond, 1987: Effects of convection cell geometry on simulated tornadoes. J. Atmos. Sci., 44, 140–147.CrossRefGoogle Scholar
  267. Wilson, J. W., G. B. Foote, N. A. Crook, J. C. Fankhauser, C. G. Wade, J. D. Tuttle, and D. K. Mueller, 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 1785–1815.CrossRefGoogle Scholar
  268. Wilson, T., and R. Rotunno, 1986: Numerical simulation of a laminar end-wall vortex and boundary layer. Phys. Fluids, 29, 3993–4005.CrossRefGoogle Scholar
  269. Winn, W. P., S. J. Hunyady, and G. D. Aulich, 1999: Pressure at the ground within and near a large tornado. J. Geophys. Res., 104 (D18), 22 067–22 082.Google Scholar
  270. Witt, A., M. D. Eilts, G. J. Stumpf, E. D. Mitchell, J. T. Johnson, and K. W. Thomas, 1998: Evaluating the performance of the WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513–518.CrossRefGoogle Scholar
  271. Wurman, J., and S. Gill, 2000: Finescale radar observations of the Dimmitt, Texas (2 June 1995), tornado. Mon. Wea. Rev., 128, 2135–2164.CrossRefGoogle Scholar
  272. Wurman, J., J. M. Straka, and E. N. Rasmussen, 1996: Fine-scale Doppler radar observations of tornadoes. Science, 272, 1774–1777.CrossRefGoogle Scholar
  273. Wurman, J., M. Randall, and A. Zahrai, 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 1502–1512.CrossRefGoogle Scholar
  274. Zhang, J., and T. Gal-Chen, 1996: Single-Doppler wind retrieval in the moving frame of reference. J. Atmos. Sci., 53, 2609–2623.CrossRefGoogle Scholar
  275. Ziegler, C. L., E. N. Rasmussen, T. R. Shepherd, A. I. Watson, and J. M. Straka, 2001: Evolution of low-level rotation in the 29 May 1994 Newcastle—Graham, Texas, storm complex during VORTEX. Mon. Wea. Rev., 129, 1339–1368.CrossRefGoogle Scholar
  276. Zrnié, D. S., and R. J. Doviak, 1975: Velocity spectra of vortices scanned with a pulse-Doppler radar. J. Appl. Meteor., 14, 1531–1539.CrossRefGoogle Scholar
  277. Zrnié, D. S., and M. Istok, 1980: Wind speeds in two tornadic storms and a tornado, deduced from Doppler spectra. J. Appl. Meteor., 19, 1405–1415.CrossRefGoogle Scholar
  278. Zrnié, D. S., R. J. Doviak, and D. W. Burgess, 1977: Probing tornadoes with a pulse Doppler radar. Quart. J. Roy. Meteor. Soc., 103, 707–720.CrossRefGoogle Scholar
  279. Zrnié, D. S., D. W. Burgess, and L. Hennington, 1985: Doppler spectra and estimated windspeed of a violent tornado. J. Climate Appl. Meteor., 24, 1068–1081.CrossRefGoogle Scholar

Copyright information

© American Meteorological Society 2001

Authors and Affiliations

  • Robert Davies-Jones
    • 1
  • R. Jeffrey Trapp
    • 1
    • 2
  • Howard B. Bluestein
    • 3
  1. 1.National Severe Storms LaboratoryNOAANormanUSA
  2. 2.Cooperative Institute for Mesoscale Meteorological StudiesUniversity of OklahomaNormanUSA
  3. 3.School of MeteorologyUniversity of OklahomaNormanUSA

Personalised recommendations