Pathophysiology of osteoarthritis

  • Francois RannouEmail author


Human movement is made possible by synovial fluid, or freely moving, and cartilaginous, or fixed, joints [1]. The synovial joint is a functional connective tissue unit that allows two opposed limb bones to move freely in relation to each other.


Anterior Cruciate Ligament Articular Cartilage Subchondral Bone Knee Osteoarthritis Osteoarthritis Cartilage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gardner DL. Problems and paradigms in joint pathology. J Anat. 1994;184:465-476.Google Scholar
  2. 2.
    McLeod WD, Hunter S. Biomechanical analysis of the knee: primary functions as elucidated by anatomy. Phys Ther. 1980;60:1561-1564.Google Scholar
  3. 3.
    Kishner S, Courseault J, Authement A. Knee joint anatomy. Available at: Last accessed December 7, 2012.
  4. 4.
    Abdul-Jabar HB, Walsh U, Rashid A, Rajkumar S. Primary meningococcal osteoarthritis of the knee—case report and review of the literature. Eur Orthop Traumatol. 2011;2:149-152.Google Scholar
  5. 5.
    Niitsu M. Cystic and cyst-like lesions of the knee. In: Niitsu M, ed. Magnetic Resonance Imaging of the Knee. Springer-Verlag Berlin Heidelberg; 2013: 181-198.Google Scholar
  6. 6.
    Berenbaum F. Osteoarthritis. B. Pathology and pathogenesis. In: Klippel JH, Stone JH, Crofford LJ, White PH, eds. Primer on the Rheumatic Diseases. New York, NY: Springer Science+Business Media, LLC; 2008:229-234.Google Scholar
  7. 7.
    Symmons D, Mathers C, Pfleger B. Global burden of osteoarthritis in the year 2000. World Health Organization Web site. Available at: Accessed December 7, 2012.
  8. 8.
    Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64:1697-1707.Google Scholar
  9. 9.
    Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213:626-634.Google Scholar
  10. 10.
    Horton WE Jr, Bennion P, Yang L. Cellular, molecular, and matrix changes in cartilage during aging and osteoarthritis. J Musculoskelet Neuronal Interact. 2006;6:379-381.Google Scholar
  11. 11.
    Bahk Y-W. Degenerative joint diseases. In: Bahk Y-W, ed. Combined Scintigraphic and Radiographic Diagnosis of Bone and Joint Diseases, Including Gamma Correction Interpretation. 4th ed. Berlin, Germany: Springer-Verlag Berlin Heidelberg; 2013:141-183.Google Scholar
  12. 12.
    Bijlsma JWJ, Berenbaum F, Lafeber FPJG. Osteoarthritis: an update with relevance for clinical practice. Lancet. 2011;377:2115-2126.Google Scholar
  13. 13.
    Altman RD. Osteoarthritis in the elderly population. In: Nakasato Y, Yung RL, eds. Geriatric Rheumatology. A Comprehensive Approach. New York, NY: Springer Science+Business Media, LLC; 2011:187-196.Google Scholar
  14. 14.
    Myers SL. Osteoarthritis and crystal-associated synovitis. In: Hunder GG, ed. Atlas of Rheumatology, 4th ed. Philadelphia, PA: Current Medicine LLC; 2005:54-81.Google Scholar
  15. 15.
    Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G. Subchondral bone as a key target for osteoarthritis treatment. Biochem Pharmacol. 2012;83:315-323.Google Scholar
  16. 16.
    Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012;8:665-673.Google Scholar
  17. 17.
    Sniekers YH, Intema F, Lafeber FPJG, et al. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models. BMC Musculoskelet Disord. 2008;9:20.Google Scholar
  18. 18.
    Tat SK, Pelletier J-P, Lajeunesse D, Fahmi H, Duval N, Martel-Pelletier J. Differential modulation of RANKL isoforms by human osteoarthritic subchondral bone osteoblasts: influence of osteotropic factors. Bone. 2008;43:284-291.Google Scholar
  19. 19.
    Conaghan PG, Vanharanta H, Dieppe PA. Is progressive osteoarthritis an atheromatous vascular disease? Ann Rheum Dis. 2005;64:1539-1541.Google Scholar
  20. 20.
    Walsh D. Neurogenic factors in the etiopathogenesis of osteoarthritis. Paper presented at: 10th World Congress of the International Cartilage Repair Society; May 12-15, 2012; Montreal, Quebec, Canada.Google Scholar
  21. 21.
    Botter SM, van Osch GJVM, Clockaerts S, Waarsing JH, Weinans H, van Leeuwen JPTM. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum. 2011;63:2690-2699.Google Scholar
  22. 22.
    Weinans H, Siebelt M, Agricola R, Botter SM, Piscaer TM, Waarsing JH. Pathophysiology of peri-articular bone changes in osteoarthritis. Bone. 2012;51:190-196.Google Scholar
  23. 23.
    Kumarasinghe DD, Perilli E, Tsangari H, et al. Critical molecular regulators, histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis. Osteoarthritis Cartilage. 2010;18:1337-1344.Google Scholar
  24. 24.
    Sakao K, Takahashi KA, Arai Y, et al. Osteoblasts derived from osteophytes produce interleukin-6, interleukin-8, and matrix metalloproteinase-13 in osteoarthritis. J Bone Miner Metab. 2009;27:412-423.Google Scholar
  25. 25.
    Menkes C-J, Lane NE. Are osteophytes good or bad? Osteoarthritis Cartilage. 2004;12(suppl A):S53-S54.Google Scholar
  26. 26.
    Sellam J, Berenbaum F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat Rev Rheumatol. 2010;6:625-635.Google Scholar
  27. 27.
    Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012;51:249-257.Google Scholar
  28. 28.
    Hill CL, Seo GS, Gale D, Totterman S, Gale ME, Felson DT. Cruciate ligament integrity in osteoarthritis of the knee. Arthritis Rheum. 2005;52:794-799.Google Scholar
  29. 29.
    Hasegawa A, Otsuki S, Pauli C, et al. Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum. 2012;64:696-704.Google Scholar
  30. 30.
    Sharma L, Chmiel JS, Almagor O, et al. The role of varus and valgus alignment in the initial development of knee cartilage damage by MRI: the MOST Study. Ann Rheum Dis. 2012;epub ahead of print.Google Scholar
  31. 31.
    Arden N, Nevitt MC. Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol. 2006;20:3-25.Google Scholar
  32. 32.
    Conde J, Scotece M, Gómez R, Lopez V, Gómez-Reino JJ, Gualillo O. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis. 2011; epub doi:  10.1155/2011/203901.
  33. 33.
    Anandacoomarasamy A, Leibman S, Smith G, et al. Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis. 2012;71:26-32.Google Scholar
  34. 34.
    Leong DJ, Sun HB. Events in articular chondrocytes with aging. Curr Osteoporos Rep. 2011;9:196-201.Google Scholar
  35. 35.
    Shimada H, Sakakima H, Tsuchimochi K, et al. Senescence of chondrocytes in aging articular cartilage: GADD45β mediates p21 expression in association with C/EBPβ in senescence-accelerated mice. Pathol Res Pract. 2011;207:225-231.Google Scholar
  36. 36.
    Brandl A, Hartmann A, Bechmann V, Graf B, Nerlich M, Angele P. Oxidative stress induces senescence in chondrocytes. J Orthop Res. 2011;29:1114-1120.Google Scholar
  37. 37.
    Dai S-M, Shan Z-Z, Nakamura H, et al. Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1–induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis. Arthritis Rheum. 2006;54:818-831.Google Scholar
  38. 38.
    Martin JA, Buckwalter JA. The role of chondrocyte senescence in the pathogenesis of osteoarthritis and in limiting cartilage repair. J Bone Joint Surg Am. 2003;85(suppl 2):106-110.Google Scholar
  39. 39.
    Nah S-S, Choi I-Y, Lee CK, et al. Effects of advanced glycation end products on the expression of COX-2, PGE2 and NO in human osteoarthritic chondrocytes. Rheumatology (Oxford). 2008;47:425-431.Google Scholar
  40. 40.
    Nah S-S, Choi I-Y, Yoo B, Kim YG, Moon H-B, Lee C-K. Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and TNF-α in human osteoarthritic chondrocytes. FEBS Lett. 2007;581:1928-1932.Google Scholar
  41. 41.
    Huang C-Y, Lai K-Y, Hung L-F, Wu W-L, Liu F-C, Ho L-J. Advanced glycation end products cause collagen II reduction by activating Janus kinase/signal transducer and activator of transcription 3 pathway in porcine chondrocytes. Rheumatology (Oxford). 2011;50:1379-1389.Google Scholar
  42. 42.
    Hiran TS, Moulton PJ, Hancock JT. Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med. 1997;23:736-743.Google Scholar
  43. 43.
    Tiku ML, Shah R, Allison GT. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem. 2000;275:20069-20076.Google Scholar
  44. 44.
    Jallali N, Ridha H, Thrasivoulou C, Underwood C, Butler PEM, Cowen T. Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthritis Cartilage. 2005;13:614-622.Google Scholar
  45. 45.
    Blanco F, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis. Nat Rev Rheumatol. 2011;7:161-169.Google Scholar
  46. 46.
    Loeser RF, Shanker G, Carlson CS, Gardin JF, Shelton BJ, Sonntag WE. Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum. 2000;43:2110-2120.Google Scholar
  47. 47.
    Martin JA, Ellerbroek SM, Buckwalter JA. Age-related decline in chondrocyte response to insulin-like growth factor-I: the role of growth factor binding proteins. J Orthop Res. 1997;15:491-498.Google Scholar
  48. 48.
    Chubinskaya S, Kumar B, Merrihew C, Heretis K, Rueger DC, Kuettner KE. Age-related changes in cartilage endogenous osteogenic protein-1 (OP-1). Biochim Biophys Acta. 2002;1588:126-134.Google Scholar
  49. 49.
    Blaney Davidson EN, Scharstuhl A, Vitters EL, van der Kraan PM, van den Berg WB. Reduced transforming growth factor-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther. 2005;7:R1338-R1347.Google Scholar
  50. 50.
    Scharstuhl A, van Beuningen HM, Vitters EL, van der Kraan PM, van den Berg WB. Loss of transforming growth factor counteraction on interleukin 1 mediated effects in cartilage of old mice. Ann Rheum Dis. 2002;61:1095-1098.Google Scholar
  51. 51.
    Loeser RF, Pacione CA, Chubinskaya S. The combination of insulin-like growth factor 1 and osteogenic protein 1 promotes increased survival of and matrix synthesis by normal and osteoarthritic human articular chondrocytes. Arthritis Rheum. 2003;48:2188-2196.Google Scholar
  52. 52.
    Lee SW, Song YS, Lee SY, et al. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy. PLoS One. 2011;6:e19163.Google Scholar
  53. 53.
    Taniguchi N, Caramés B, Ronfani L, et al. Aging-related loss of the chromatin protein HMGB2 in articular cartilage is linked to reduced cellularity and osteoarthritis. Proc Natl Acad Sci USA. 2009;106:1181-1186.Google Scholar
  54. 54.
    Scanzello CR, Plaas A, Crow MK. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? Curr Opin Rheumatol. 2008;20:565-572.Google Scholar
  55. 55.
    Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol. 2006;20:1003-1025.Google Scholar
  56. 56.
    Mobasheri A. Osteoarthritis 2012 year in review: biomarkers. Osteoarthritis Cartilage. 2012;20:1451-1464.Google Scholar
  57. 57.
    Henrotin Y, Gharbi M, Mazzucchelli G, Dubuc J-E, De Pauw E, Deberg M. Fibulin 3 peptides Fib3-1 and Fib3-2 are potential biomarkers of osteoarthritis. Arthritis Rheum. 2012;64:2260-2267.Google Scholar
  58. 58.
    Wang Y, Li D, Xu N, et al. Follistatin-like protein 1: a serum biochemical marker reflecting the severity of joint damage in patients with osteoarthritis. Arthritis Res Ther. 2011;13:R193.Google Scholar
  59. 59.
    Li D, Wang Y, Xu N, et al. Follistatin-like protein 1 is elevated in systemic autoimmune diseases and correlated with disease activity in patients with rheumatoid arthritis. Arthritis Res Ther. 2011;13:R17.Google Scholar
  60. 60.
    Lanyon P, O’Reilly S, Jones A, Doherty M. Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann Rheum Dis. 1998;57:595-601.Google Scholar
  61. 61.
    Cicuttini FM, Baker J, Hart DJ, Spector TD. Association of pain with radiological changes in different compartments and views of the knee joint. Osteoarthritis Cartilage. 1996;4:143-147.Google Scholar
  62. 62.
    Felson DT, Chaisson CE, Hill CL, et al. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541-549.Google Scholar
  63. 63.
    Xu L, Hayashi D, Roemer FW, Felson DT, Guermazi A. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum. 2012;42:105-118.Google Scholar

Copyright information

© Springer Healthcare 2014

Authors and Affiliations

  1. 1.Paris Descartes UniversityParisFrance

Personalised recommendations