Skip to main content

Fetal Programming

  • Chapter
  • First Online:
Caring for Children Born Small for Gestational Age
  • 950 Accesses

Abstract

In recent years, an overwhelming number of epidemiological, clinical, and experimental data have shown that exposures during prenatal and early postnatal life influence the risk of developing chronic diseases during childhood and adulthood (e.g., obesity, type 2 diabetes, cardiovascular disease).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plagemann A. ‘Fetal programming’ and ‘functional teratogenesis’: on epigenetic mechanisms and prevention of perinatally acquired lasting health risks. J Perinat Med. 2004;32:297-305.

    Google Scholar 

  2. Dorner G. Perinatal hormone levels and brain organization. In: Stumpf W, Grant LD, eds. Anatomical neuroendocrinology. Basel, Switzerland: Karger; 1975:245-252.

    Google Scholar 

  3. Hales CN, Barker DJP. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595-601.

    Google Scholar 

  4. Gluckman PD, Hanson MA. The conceptual basis for the developmental origins of health and disease. In: Gluckman P, Hanson M, eds. Developmental origins of health and disease. Cambridge: Cambridge University Press; 2006:33-50.

    Google Scholar 

  5. Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61-73.

    Google Scholar 

  6. Gluckman PD, Hanson MA. Mismatch: the lifestyle diseases timebomb. Oxford, UK: Oxford University Press; 2008.

    Google Scholar 

  7. Dorner G, Plagemann A. Perinatal hyperinsulinism as possible predisposing factor for diabetes mellitus, obesity and enhanced cardiovascular risk in later life. Horm Metab Res. 1994;26:213-221.

    Google Scholar 

  8. Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease - the hypothesis revisited. BMJ. 1999;319:245-249.

    Google Scholar 

  9. Plagemann A, Harder T. Premature birth and insulin resistance (letter). N Engl J Med. 2005;352:939-940.

    Google Scholar 

  10. Plagemann A, Rodekamp E, Harder T. To: Hales CN, Ozanne SE. For debate: fetal and early postnatal growth restriction lead to diabetes, the metabolic syndrome and renal failure (letter). Diabetologia. 2004;47:1334-1335.

    Google Scholar 

  11. Hofman PL, Regan F, Jackson WE, et al. Premature birth and later insulin resistance. N Engl J Med. 2004;351:2179-2186.

    Google Scholar 

  12. Crowther NJ, Trusler J, Cameron N, et al. Relation between weight gain and beta-cell secretory activity and non-esterified fatty acid production in 7-year-old African children: results from the Birth to Ten study. Diabetologia. 2000;43:978-985.

    Google Scholar 

  13. Fewtrell MS, Doherty C, Cole TJ, et al. Effects of size at birth, gestational age and early growth in preterm infants on glucose and insulin concentrations at 9-12 years. Diabetologia. 2000;43:714-717.

    Google Scholar 

  14. Neitzke U, Harder T, Plagemann A. Intrauterine growth restriction and developmental programming of the metabolic syndrome: a critical appraisal. Microcirculation. 2011;18:304-311.

    Google Scholar 

  15. Harder T, Schellong K, Stupin J, et al. Where is the evidence that low birth weight leads to obesity? Lancet. 2007;369:1859.

    Google Scholar 

  16. Harder T, Rodekamp E, Schellong K, et al. Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol. 2007;165:849-857.

    Google Scholar 

  17. Plagemann A, Harder T. Birth weight and risk of type 2 diabetes. JAMA. 2009;301:1540.

    Google Scholar 

  18. Harder T, Roepke K, Diller N, et al. Birth weight, early weight gain and subsequent risk of type 1 diabetes: systematic review and meta-analysis. Am J Epidemiol. 2009;169:1428-1436.

    Google Scholar 

  19. Huxley RR, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birth weight and subsequent blood pressure? Lancet. 2002;360:659-665.

    Google Scholar 

  20. Petry CJ, Ozanne SE, Wang CL, et al. Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin Sci. 1997;93:147-152.

    Google Scholar 

  21. Plagemann A. Fetale programmierung und funktionelle teratologie: ausgewahlte mechanismen und konsequenzen. In: Gortner L, Dudenhausen JW, eds. Vorgeburtliches Wachstum und gesundheitliches. Frankfurt: Med Verl-Ges Umwelt und Medizin; 2001:65-78.

    Google Scholar 

  22. Ozanne SE, Hales CN. Lifespan: catch-up growth and obesity in male mice. Nature. 2004;427:411-412.

    Google Scholar 

  23. Pettitt DJ, Baird HR, Aleck KA, et al. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy. N Engl J Med. 1983;308:242-245.

    Google Scholar 

  24. Silverman BL, Rizzo T, Green OC, et al. Long-term prospective evaluation of offspring of diabetic mothers. Diabetes. 1991;40(suppl 2):121-125.

    Google Scholar 

  25. Plagemann A, Harder T, Kohlhoff R, et al. Overweight and obesity in infants of mothers with long-term insulin-dependent diabetes or gestational diabetes. Int J Obes. 1997;21:451-456.

    Google Scholar 

  26. Weiss PAM, Scholz HS, Haas J, et al. Long-term follow-up of infants of mothers with type 1 diabetes: Evidence for hereditary and nonhereditary transmission of diabetes and precursors. Diabetes Care. 2000;23:905-911.

    Google Scholar 

  27. Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes. 2000;49:2208-2211.

    Google Scholar 

  28. Plagemann A. Toward a unifying concept on perinatal programming: vegetative imprinting by environment-dependent biocybernetogenesis. In: Plagemann A, ed. Perinatal programming - the state of the art. Berlin: Walter De Gruyter; 2011:243-282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Zabransky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Healthcare

About this chapter

Cite this chapter

Zabransky, S. (2013). Fetal Programming. In: Zabransky, S. (eds) Caring for Children Born Small for Gestational Age. Springer Healthcare, Tarporley. https://doi.org/10.1007/978-1-908517-90-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-908517-90-6_11

  • Published:

  • Publisher Name: Springer Healthcare, Tarporley

  • Print ISBN: 978-1-908517-85-2

  • Online ISBN: 978-1-908517-90-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics