Skip to main content

Cloud Models: Their Evolution and Future Challenges

  • Chapter

Part of the book series: Meteorological Monographs ((METEOR))

Abstract

A review of convective cloud modeling spanning the period from the days of the NOAA Experimental. Meteorology Laboratory (EML) in the late 1960s to 2000 is presented. The intent is to illustrate the evolution of cloud models from the one-dimensional parcel-type models to the current generation of three-dimensional convective storm models and cloud ensemble models. Moreover, it is shown that Dr. Joanne Simpson played a pivotal role in the evolution of cloud models from the very first models to current generation cloud ensemble models. It is also shown that the first concept of the Regional Atmospheric Modeling System (RAMS) began while Drs. Cotton and Pielke worked under Dr. Simpson’s supervision at EML. It is then illustrated how far cloud modeling has come with recent applications of RAMS to atmospheric research and numerical weather prediction. The chapter concludes with an outline of the major limitations of current generation convective cloud models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbs, D., 1999: A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation. Water Resour. Res., 35, 785–796.

    Article  Google Scholar 

  • Abbs, D., and B. F. Ryan, 1997: Numerical modelling of extreme pre-cipitation events. Res. Rep. 131, Urban Water Research Association of Australia, CSIRO, 71 pp.

    Google Scholar 

  • Ackerman, A. S., O. B. Toon, and P. V. Hobbs, 1995: A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements. J. Atmos. Sci., 52, 1204–1236.

    Article  Google Scholar 

  • Alexander, G. D., and W R. Cotton, 1998: The use of cloud-resolving simulations of mesoscale convective systems to build a convective parameterization scheme. J. Atmos. Sci., 55, 408–419.

    Article  Google Scholar 

  • Al-Naimi, R., and C. P. R. Saunders, 1985: Measurements of natural deposition and condensation-freezing ice nuclei with a continuous flow chamber. Atmos. Environ., 19, 1871–1882.

    Article  Google Scholar 

  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Asai, T., and A. Kasahara, 1967: A theoretical study of the compensating downward motions associated with cumulus clouds. J. Atmos. Sci., 24, 487–496.

    Article  Google Scholar 

  • Ashby, C. T., 2000: Sensitivity of simulated flash flood environment evolution to soil moisture initialization. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 117 pp.

    Google Scholar 

  • Austin, P. H., S. Siems, and Y. Wang, 1995: Constraints on droplet growth in radiatively cooled stratocumulus. J. Geophys. Res., 100, 14, 231–14 242.

    Google Scholar 

  • Baker, M. B., and J. Latham, 1979: The evolution of droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 1612–1615.

    Article  Google Scholar 

  • Baker, M. B., R. G. Corbin, and J. Latham, 1980: The influence of entrainment on the evolution of cloud droplet spectra: I. A model of inho- mogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581–598.

    Article  Google Scholar 

  • R. E. Breidenthal, T. W. Choularton, and J. Latham, 1984: The effects of turbulent mixing in clouds. J. Atmos. Sci., 41, 299–304.

    Article  Google Scholar 

  • Bernardet, L. R., and W. R. Cotton, 1998: Multiscale evolution of a derecho-producing MCS. Mon. Wea. Rev., 126, 2991–3015.

    Article  Google Scholar 

  • R. E. Breidenthal, L. D. Grasso, J. E. Nachamkin, C. A. Finley, and W. R. Cotton, 2000: Simulating convective events using a high-resolution mesoscale model. J. Geophys. Res., 105, 14 963–14 982.

    Google Scholar 

  • Blanchard, D. O., W. R. Cotton, and J. M. Brown, 1998: Mesoscale circulation growth under conditions of weak inertial instability. Mon. Wea. Rev., 126, 118–140.

    Google Scholar 

  • Bossert, J. E., and W. R. Cotton, 1994a: Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Mon. Wea. Rev., 122, 1449–1471.

    Article  Google Scholar 

  • Bossert, J. E., and W. R. Cotton, 1994b: Regional-scale flows in mountainous terrain. Part II: Simplified numerical experiments. Mon. Wea. Rev., 122, 1472–1489.

    Article  Google Scholar 

  • Chase, T. N., R. A. Pielke Sr., T. G. F. Kittel, J. S. Baron, and T. J. Stohlgren, 1999: Potential impacts on Colorado Rocky Mountain weather due to land use changes on the adjacent Great Plains. J. Geophys. Res., 104, 16 673–16 690.

    Google Scholar 

  • Cheng, W. Y. Y., T. Wu, and W. R. Cotton, 2001: Large-eddy simulations of the 26 November 1991 FIRE II cirrus case. J. Atmos. Sci., 58, 1017–1034.

    Article  Google Scholar 

  • Copeland, J. H., R. A. Pielke, and T. G. F. Kittel, 1996: Potential climatic impacts of vegetation change: A regional modeling study. J. Geophys. Res., 101, 7409–7418.

    Article  Google Scholar 

  • Costa, A. A., R. L. Walko, W. R. Cotton, and R. A. Pielke Sr., 2001: SST sensitivities in multiday TOGA COARE cloud-resolving simulations. J. Atmos. Sci., 58, 253–268.

    Article  Google Scholar 

  • Cotton, W. R., 1971: Comments on “On steady-state one-dimensional models of cumulus convection.” J. Atmos. Sci., 28, 647–648.

    Article  Google Scholar 

  • Costa, A. A., R. L. Walko, W. R. Cotton, and R. A. Pielke Sr., 1972a: Numerical simulation of precipitation development in supercooled cumuli, Part I. Mon. Wea. Rev., 100, 757–763.

    Article  Google Scholar 

  • Costa, A. A., R. L. Walko, W. R. Cotton, and R. A. Pielke Sr., 1972b: Numerical simulation of precipitation development in supercooled cumuli, Part II. Mon. Wea. Rev., 100, 764–784.

    Article  Google Scholar 

  • Costa, A. A., R. L. Walko, W. R. Cotton, and R. A. Pielke Sr., 1975: On parameterization of turbulent transport in cumulus clouds. J. Atmos. Sci., 32, 548–564.

    Article  Google Scholar 

  • Costa, A. A., R. L. Walko, W. R. Cotton, and R. A. Pielke Sr., and G. J. Tripoli, 1978: Cumulus convection in shear flow—Three-dimensional numerical experiments. J. Atmos. Sci., 35, 1503–1521.

    Article  Google Scholar 

  • Costa, A. A., R. L. Walko, W. R. Cotton, and R. A. Pielke Sr., and R. A. Anthes, 1989: Storm and Cloud Dynamics., Inter-national Geophysics Series; Vol. 44, Academic Press, 883 pp.

    Google Scholar 

  • Costa, A. A., G. Thompson, and P. W. Mielke Jr., 1994: Real-time mesoscale prediction on workstations. Bull. Amer. Meteor. Soc., 75, 349–362.

    Article  Google Scholar 

  • Costa, A. A., J. F. Weaver, and B. A. Beitler, 1995: An unusual summertime downslope wind event in Fort Collins, Colorado, on 3 July 1993. Wea. Forecasting, 10, 786–797.

    Article  Google Scholar 

  • Costa, A. A., and Coauthors, 2002: RAMS 2001. Current status and future directions. Meteor. Atmos. Phys., in press.

    Google Scholar 

  • Cram, J. M., R. A. Pielke, and W. R. Cotton, 1992a: Numerical simulation and analysis of a prefrontal squall line. Part I: Observations and basic simulation results. J. Atmos. Sci., 49, 189–208.

    Article  Google Scholar 

  • Cram, J. M., R. A. Pielke, and W. R. Cotton, 1992b: Numerical simulation and analysis of a prefrontal squall line. Part II: Propagation of the squall line as an internal gravity wave. J. Atmos. Sci., 49, 209–225.

    Article  Google Scholar 

  • DeMott, P. J., M. P. Meyers, and W. R. Cotton, 1994: Parameterization and impact of ice initiation processes relevant to numerical model simulations of cirrus clouds. J. Atmos. Sci., 51, 77–90.

    Article  Google Scholar 

  • Duda, D. P., G. L. Stephens, B. B. Stevens, and W. R. Cotton, 1996: Effects of aerosol and horizontal inhomogeneity on the broadband albedo of marine stratus: Numerical simulations. J. Atmos. Sci., 53, 3757–3769.

    Article  Google Scholar 

  • Eastman, J. L., 1995: Numerical simulation of Hurricane Andrew—Rapid intensification. Preprints, 21st Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 111–113.

    Google Scholar 

  • Eastman, J. L., R. A. Pielke, and W. A. Lyons, 1995: Comparison of lake-breeze model simulations with tracer data. J. Appl. Meteor., 34, 1398–1418.

    Article  Google Scholar 

  • Eastman, J. L., M. E. Nicholls, and R. A. Pielke, 1996: A numerical simulation of Hurricane Andrew. Presented at Second Int. Symp. on Computational Wind Engineering, Fort Collins, CO.

    Google Scholar 

  • Eastman, J. L., R. A. Pielke, and D. J. McDonald, 1998: Calibration of soil moisture for lager eddy simulations over the FIFE area. J. Atmos. Sci., 55, 1131–1140.

    Article  Google Scholar 

  • Eastman, J. L., M. B. Coughenour, and R. A. Pielke, 2001: The effects of CO, and landscape change using a coupled plant and meteorological model. Global Change Biol., 7, 797–815.

    Article  Google Scholar 

  • Farley, R. D., and H. D. Orville, 1986: Numerical modeling of hailstorms and hailstone growth. Part I: Preliminary model verification and sensitivity tests. J. Climate Appl. Meteor., 25, 2014–2035.

    Article  Google Scholar 

  • Feingold, G., S. M. Kreidenweis, B. Stevens, and W. R. Cotton, 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101, (D16), 21 391–21 402.

    Google Scholar 

  • Feingold, G., S. M. W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 4100–4117.

    Article  Google Scholar 

  • Ferrier, B. S., and R. A. Houze Jr., 1989: One-dimensional time-dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46, 330–352.

    Article  Google Scholar 

  • Finley, C. A., W. R. Cotton, and R. A. Pielke, 2001: Numerical simulation of tornadogenesis in a high-precipitation supercell. Part I: Storm evolution and transition into a bow echo. J. Atmos. Sci., 58, 1597–1629.

    Article  Google Scholar 

  • Fovell, R., 1991: Influence of the Coriolis force in two-dimensional model storm. Mon. Wea. Rev., 119, 606–630.

    Article  Google Scholar 

  • Fovell, R., and Y. Ogura, 1988: Numerical simulation of a midlatitude squall line in two dimensions. J. Atmos. Sci., 45, 3846–3879.

    Article  Google Scholar 

  • Fovell, R., D. Durran, and J. R. Holton, 1992: Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci., 49, 1427–1442.

    Article  Google Scholar 

  • Gaudet, B., and W. R. Cotton, 1998: Statistical characteristics of a real-time precipitation forecasting model. Wea. Forecasting, 13, 966–982.

    Google Scholar 

  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving modeling of cloud systems during Phase III, of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264–3282.

    Article  Google Scholar 

  • Grasso, L. G., 1996: Numerical simulation of the May 15 and April 26, 1991 tornadic thunderstorms. Ph.D. dissertation, Colorado State University, 151 pp.

    Google Scholar 

  • Grasso, L. G., and W. R. Cotton, 1995: Numerical simulation of a tornado vortex. J. Atmos. Sci., 52, 1092–1203.

    Article  Google Scholar 

  • Greene, E. M., G. E. Liston, and R. A. Pielke Sr., 1999: Relationships between landscape, snowcover depletion, and regional weather and climate. Hydrol. Proc., 13, 2453–2466.

    Article  Google Scholar 

  • Hadfield, M. G., W. R. Cotton, and R. A. Pielke, 1991: Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part I: A small-scale, circulation with zero wind. Bound.-Layer Meteor., 57, 79–114.

    Article  Google Scholar 

  • Hadfield, M. G., W. R. Cotton, and R. A. Pielke, 1992: Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part II: The effect of changes in wavelength and wind speed. Bound.-Layer Meteor., 58, 307–327.

    Article  Google Scholar 

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28.

    Article  Google Scholar 

  • Harrington, J. Y., G. Feingold, W. R. Cotton, and S. M. Kreidenweis, 2000: Radiative impacts on the growth of a population of drops within simulated summertime Arctic stratus. J. Atmos. Sci., 57, 766–785.

    Article  Google Scholar 

  • Heckman, S. T., and W. R. Cotton, 1993: Mesoscale numerical simulation of cirrus clouds—FIRE case study and sensitivity analysis. Mon. Wea. Rev., 121, 2264–2284.

    Article  Google Scholar 

  • Heymsfield, A. J., D. N. Johnson, and J. E. Dye, 1978: Observations of moist adiabatic asent in northeast Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 1689–1703.

    Article  Google Scholar 

  • Hill, G. E., 1974: Factors controlling the size of cumulus clouds as revealed by numerical experiments. J. Atmos. Sci., 31, 646–673.

    Article  Google Scholar 

  • Hobbs, P. V., and A. L. Rangno, 1985: Ice particle concentrations in clouds. J. Atmos. Sci., 42, 2523–2549.

    Article  Google Scholar 

  • Jiang, H., and W. R. Cotton, 2000: Large-eddy simulation of shallow cumulus convection during BOMEX: Sensitivity to microphysics and radiation. J. Atmos. Sci., 57, 582–594.

    Article  Google Scholar 

  • Jiang, H., J. O. Pinto, J. A. Curry, and M. J. Weissbluth, 2000: Cloud resolving simulations of mixed-phase Arctic stratus observed during BASE: Sensitivity to concentration of ice crystals and large-scale heat and moisture advection. J. Atmos. Sci., 57, 2105–2117.

    Article  Google Scholar 

  • Jiang, H., G. Feingold, W. R. Cotton, and P. G. Duynkerke, 2001: Large-eddy simulations of entrainment of cloud condensation nuclei into the Arctic boundary layer: 18 May 1998 FIRE/SHEBA case study. J. Geophys. Res., 106, 15 113–15 122.

    Google Scholar 

  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448–460.

    Article  Google Scholar 

  • Johnson, D. B., P. K. Wang, and J. M. Straka, 1994: A study of microphysical processes in the 2 August 1981 CCOPE supercell storm. Atmos. Res., 33, 93–123.

    Article  Google Scholar 

  • Kessler, E., III, 1969: On the distribution and continuity of water substance in atmospheric circulation. Meteor. Monogr., Amer. Meteor. Soc., No. 32, Amer. Meteor. Soc., 84 pp.

    Google Scholar 

  • Khain, A. P, and M. B. Pinsky, 1995: Drop inertia and its contribution to turbulent coalescence in convective clouds. Part I: Drop fall in the flow with random horizontal velocity. J. Atmos. Sci., 52, 196–206.

    Article  Google Scholar 

  • Khain, A. P, and M. B. Pinsky, 1997: Turbulence effects on the collision kernel. II: Increase of the swept volume of colliding drops. Quart. J. Roy. Meteor. Soc., 123, 1543–1560.

    Article  Google Scholar 

  • Khairoutdinov, M. E, and Y. L. Kogan, 1999: A large eddy simulation model with explicit microphysics: Validation against aircraft observations of a stratocumulus-topped boundary layer. J. Atmos. Sci., 56, 2115–2131.

    Article  Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978a: The simulation of three-dimensional convective storms dynamics. J. Atmos. Sci., 35, 1070–1096.

    Article  Google Scholar 

  • Klemp, J. B., and R. B. Wilhelmson, 1978b: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 1097–1110.

    Article  Google Scholar 

  • Kogan, Y. L., 1991: The simulation of a convective cloud in a 3-D model with explicit microphysics. Part I: Model description and sensitivity experiments. J. Atmos. Sci., 48, 1160–1189.

    Article  Google Scholar 

  • Kogan, Y. L., and A. Shapiro, 1996: The simulation of a convective cloud in a 3D model with explicit microphysics. Part II: Dynamical and microphysical aspects of cloud merger. J. Atmos. Sci., 53, 2525–2545.

    Article  Google Scholar 

  • Latham, J., and R. L. Reed, 1977: Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra. Quart. J. Roy. Meteor. Soc., 103, 297–306.

    Article  Google Scholar 

  • Lee, T. J., and R. A. Pielke, and P. W. Mielke Jr., 1995: Modeling the clear-sky surface energy budget during FIFE87. J. Geophys. Res., 100, 25 585–25 593.

    Google Scholar 

  • Levine, J., 1959: Spherical vortex theory of bubble-like motion in cumulus clouds. J. Meteor., 16, 653–662.

    Article  Google Scholar 

  • Liston, G. E., and R. A. Pielke, 2000: A climate version of the Regional Atmospheric Modeling System. Theor. Appl. Climatol., 66, 29–47.

    Article  Google Scholar 

  • Liu, J. Y., and H. D. Orville, 1969: Numerical modeling of precipitation and cloud shadow effects on mountain-induced cumuli. J. Atmos. Sci., 26, 1283–1298.

    Article  Google Scholar 

  • Lu, L., R. A. Pielke, G. E. Liston, W. J. Parton, D. Ojima, and M. Hartman, 2000: Implementation of a two-way interactive atmospheric and ecological model and its application to the central United States. J. Climate, 14, 900–919.

    Article  Google Scholar 

  • Ludlam, F. H., and R. S. Scorer, 1953: Convection in the atmosphere. Quart. J. Roy. Meteor. Soc., 79, 94–103.

    Google Scholar 

  • Lyons, W. A., C. J. Tremback, and R. A. Pielke, 1995: Applications of the Regional Atmospheric Modeling System (RAMS) to provide input to photochemical grid models for the Lake Michigan Ozone Study (LMOS). J. Appl. Meteor., 34, 1762–1786.

    Article  Google Scholar 

  • Malkus, J. S., 1960: Recent developments in studies of penetrative convection and an application to hurricane cumulonimbus towers. Cumulus Dynamics, C. E. Anderson, Ed., Pergamon Press, 65–84.

    Google Scholar 

  • Malkus, J. S., and R. S. Scorer, 1955: The erosion of cumulus towers. J. Meteor., 12, 43–57.

    Article  Google Scholar 

  • Malkus, J. S., and R. T. Williams, 1963: On the interaction between severe storms and large cumulus clouds. Meteor. Monogr., No. 5, Amer. Meteor. Soc., 59–64.

    Google Scholar 

  • Malkus, J. S., and G. Witt, 1959: The evolution of a moist convective element. A numerical calculation. The Atmosphere and the Sea in Motion, B. Bolvin, Ed., Rockefeller Institute Press, 425–439.

    Google Scholar 

  • Meyers, M. P, and W. R. Cotton, 1992: Evaluation of the potential for wintertime quantitative precipitation forecasting over mountainous terrain with an explicit cloud model. Part I: Two-dimensional sensitivity experiments. J. Appl. Meteor., 31, 26–50.

    Article  Google Scholar 

  • Meyers, M. P, P. J. DeMott, and W. R. Cotton, 1992: New primary ice nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721.

    Article  Google Scholar 

  • Meyers, M. P, R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 3–39.

    Article  Google Scholar 

  • Miller, M. J., and R. P. Pearce, 1974: A three-dimensional primitive equation model of cumulonimbus convection. Quart. J. Roy. Meteor. Soc., 100, 133–154.

    Article  Google Scholar 

  • Mitrescu, C., 1998: Cloud-resolving simulations of tropical cirrus clouds. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 85 pp.

    Google Scholar 

  • Mocko, D. M., and W. R. Cotton, 1995: Evaluation of fractional cloudiness parameterizations for use in a mesoscale model. J. Atmos. Sci., 52, 2884–2901.

    Article  Google Scholar 

  • Moran, M. D., and R. A. Pielke, 1996a: Evaluation of a mesoscale atmospheric dispersion modeling system with observations from the 1980 Great Plains mesoscale tracer field experiment. Part I: Datasets and meteorological simulations. J. Appl. Meteor., 35, 281–307.

    Article  Google Scholar 

  • Moran, M. D., and R. A. Pielke, 1996b: Evaluation of a mesoscale atmospheric dis-persion modeling system with observations from the 1980 Great Plains mesoscale tracer field experiment. Part II: Dispersion simulations. J. Appl. Meteor., 35, 308–329.

    Article  Google Scholar 

  • Morton, B. R., G. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy Soc. London, 234, 1–23.

    Article  Google Scholar 

  • Mossop, S. C., 1978: The influence of drop size distribution on the production of secondary ice particles during graupel growth. Quart. J. Roy. Meteor. Soc., 104, 323–330.

    Article  Google Scholar 

  • Mukabana, J. R., and R. A. Pielke, 1996: Investigating the influence of synoptic-scale monsoonal winds and mesoscale circulations on diurnal weather patterns over Kenya using a mesoscale numerical model. Mon. Wea. Rev., 124, 224–243.

    Article  Google Scholar 

  • Murray, F. W., 1970: Numerical models of a tropical cumulus clouds with bilateral and axial symmetry. Mon. Wea. Rev., 98, 14–28.

    Article  Google Scholar 

  • Nachamkin, J. E., and W. R. Cotton, 2000: Interactions between a developing mesoscale convective system and its environment. Part II: Numerical simulation. Mon. Wea. Rev., 128, 1225–1244.

    Article  Google Scholar 

  • Nicholls, M. E., and R. A. Pielke, 1995: A numerical investigation of the effect of vertical wind shear on tropical cyclone intensification. Preprints, 21st Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 339–341.

    Google Scholar 

  • Nicholls, M. E., and W. R. Cotton, 1991: A two-dimensional numerical investigation of the interaction between sea breezes and deep convection over the Florida Peninsula. Mon. Wea. Rev., 119, 298–323.

    Article  Google Scholar 

  • Nicholls, M. E., J. L. Eastman, C. A. Finley, W. A. Lyons, C. J. Tremback, R. L. Walko, and W. R. Cotton, 1995: Applications of the RAMS numerical model to disperson over urban areas. Wind Climate in Cities, J. E. Cermak et al., Eds., Kluwer Academic, 435–463.

    Google Scholar 

  • Nicholls, M. E., J. L. Eastman, and R. A. Pielke, 1996: A numerical simulation of Hurricane Hugo. Presented at Proc. Second Int. Symp. on Computational Wind Engineering, Fort Collins, CO.

    Google Scholar 

  • Ogura, Y., 1963: The evolution of a moist convective element in a shallow, conditionally unstable atmosphere: A numerical calculation. J. Atmos. Sci., 20, 407–424.

    Article  Google Scholar 

  • Ogura, Y., 1975: On the interaction between cumulus clouds and the larg-er-scale environment. Pageoph., 113, 869–889.

    Article  Google Scholar 

  • Olsson, P. Q., and W. R. Cotton, 1997a: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part I: The numerical simulation. J. Atmos. Sci., 54, 457478.

    Google Scholar 

  • Olsson, P. Q., and W. R. Cotton, 1997b: Balanced and unbalanced circulations in a primitive equation simulation of a midlatitude MCC. Part II: Analysis of balance. J. Atmos. Sci., 54, 481–497.

    Google Scholar 

  • Olsson, P. Q., J. Y. Harrington, G. Feingold, W. R. Cotton, and S. Kreidenweis, 1998: Exploratory cloud-resolving simulations of boundary layer Arctic stratus clouds. Part I: Warm season clouds. Atmos. Res., 47–48, 573–597.

    Article  Google Scholar 

  • Orville, H. D., and L. J. Sloan, 1970: Effects of higher order advection techniques on a numerical cloud model. Mon. Wea. Rev., 98, 713.

    Google Scholar 

  • Pastushkov, R. S., 1973: The effect of vertical wind shear on the development of convective clouds. Izv. Acad. Sci. URSS Atmos. Oceanic Phys., 9, 5–11.

    Google Scholar 

  • Peterson, T. C., L. O. Grant, W. R. Cotton, and D. C. Rogers, 1991: The effect of decoupled low-level flow on winter orographic clouds and precipitation in the Yampa River Valley. J. Appl. Meteor., 30, 368–386.

    Article  Google Scholar 

  • Pielke, R. A., 1984: Mesoscale Meteorological Modeling., Academic Press, 612 pp.

    Google Scholar 

  • Pielke, R. A., and R. A. Pearce, Eds.,1994: Mesoscale Modeling of the At-mosphere, Meteor. Monogr., No. 25, 167 pp.

    Google Scholar 

  • Pielke, R. A., and M. Uliasz, 1998: Use of meteorological models as input to regional and mesoscale air quality models—Limitations and strengths. Atmos. Environ., 32, 1455–1466.

    Article  Google Scholar 

  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological mod-eling system—RAMS. Meteor. Atmos. Phys., 49, 69–91.

    Article  Google Scholar 

  • Pielke, R. A., J. H. Rodriguez, J. L. Eastman, R. L. Walko, and R. A. Stocker, 1993: Influence of albedo variability in complex terrain on mesoscale systems. J. Climate, 6, 1798–1806.

    Article  Google Scholar 

  • Pielke, R. A., J. Eastman, L. D. Grasso, J. Knowles, M. Nicholls, R. L. Walko, and X. Zeng, 1995: Atmospheric vortices. Fluid Vortices, S. Green, Ed., Kluwer Academic, 617–650.

    Google Scholar 

  • Pielke, R. A., T. J. Lee, J. H. Copeland, J. L. Eastman, C. L. Ziegler, and C. A. Finley, 1997a: Use of USGS-provided data to improve weather and climate simulations. Ecol. Appl., 7, 3–21.

    Google Scholar 

  • Pielke, R. A., X. Zeng, T. J. Lee, and G. A. Dalu, 1997b: Mesoscale fluxes over heterogeneous flat landscapes for use in larger scale models. J. Hydrol., 190, 317–336.

    Article  Google Scholar 

  • Pielke, R. A., G. E. Liston, L. Lu, and R. Avissar, 1999a: Land-surface in-fluences on atmospheric dynamics and precipitation. Integrating Hydrology, Ecosystem Dynamics, and Giogeochemistry in Complex Landscapes, J. Tenhunen and P. Kabat, Eds., John Wiley and Sons, 105–116.

    Google Scholar 

  • Pielke, R. A., R. L. Walko, L. Steyaert, P. L. Vidale, G. E. Liston, and W. A. Lyons, 1999b: The influence of anthropogenic landscape changes on weather in south Florida. Mon. Wea. Rev., 127, 1663–1673.

    Google Scholar 

  • Pielke, R. A., G. E. Liston, J. L. Eastman, L. Lu, and M. Coughenour, 1999c: Seasonal weather prediction as an initial value problem. J. Geophys. Res., 104, 19 463–19 479.

    Google Scholar 

  • Pinsky, M. B., and A. P. Khain, 1997a: Turbulence effects on the collision kernel. I: Formation of velocity deviations of drops falling within a turbulent three-dimensional flow. Quart. J. Roy. Meteor. Soc., 123, 1517–1542.

    Article  Google Scholar 

  • Pinsky, M. B., and A. P. Khain, 1997b: Formation of inhomogeneity in drop con-centration induced by the inertia of drops falling in a turbulent flow, and the influence of the inhomogeneity on the drop-spectrum broadening. Quart. J. Roy. Meteor. Soc., 123, 165–186.

    Article  Google Scholar 

  • Pinsky, M. B., and A. P. Khain, 1997c: Turbulence effects on droplet growth and size distribution in clouds—A review. J. Aerosol Sci., 28, 1177–1214.

    Google Scholar 

  • Pinsky, M. B., D. Rosenfeld, and A. Pokrovsky, 1998: Comparison of collision velocity differences of drops and graupel particles in a very turbulent cloud. Atmos. Res., 49, 99–113.

    Article  Google Scholar 

  • Pinsky, M. B., and M. Shapiro, 1999: Collisions of small drops in a turbulent flow. Part 1: Collision efficiency, problem formulation, and preliminary results. J. Atmos. Sci., 56, 2585–2600. Pointin, Y., 1985: Numerical simulation of organized convection. Part I: Model description and preliminary comparisons with squall line observations. J. Atmos. Sci., 42, 155–172.

    Google Scholar 

  • Randall, D. A., K.-M. Xu, R. J. C. Sommerville, and S. Iacobellis, 1996: Single-column models and cloud ensemble models as links between observations and climate models. J. Climate, 9, 1583–1697.

    Google Scholar 

  • Rangno, A. L., and P. V. Hobbs, 1991: Ice particle concentrations and precipitation development in small polar maritime cumuli-form clouds. Quart. J. Roy. Meteor. Soc., 117, 207–241.

    Article  Google Scholar 

  • Rangno, A. L., and P. V. Hobbs, 1994: Ice particle concentrations and precipitation development in small continental cumuliform clouds. Quart. J. Roy. Meteor. Soc., 120, 573–601.

    Article  Google Scholar 

  • Roach, W. T., 1976: On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet. Quart. J. Roy. Meteor. Soc., 102, 361–372.

    Article  Google Scholar 

  • Rogers, D. C., 1982: Field and laboratory studies of ice nucleation in winter orographic clouds. Ph. D. dissertation, University of Wyoming, Laramie, 161 pp.

    Google Scholar 

  • Ryan, B. E, and P. Lalousis, 1979: A one-dimensional time-dependent model for small cumulus. Quart. J. Roy. Meteor. Soc., 105, 615–628.

    Article  Google Scholar 

  • Ryan, B. E, G. J. Tripoli, and W. R. Cotton, 1990: Convection in high based stratiform cloud bands: Some numerical experiments. Quart. J. Roy. Meteor. Soc., 116, 943–964.

    Google Scholar 

  • Schmidt, F. H., 1947: Some speculations on the resistence to motion of cumuliform clouds. K. Ned. Meteor. Inst. Meded. Verh., 3, 1.

    Google Scholar 

  • Schmidt, J. M., and W. R. Cotton, 1990: Interactions between upper and lower tropospheric gravity waves on squall line structure and maintenance. J. Atmos. Sci., 47, 1205–1222.

    Article  Google Scholar 

  • Shaw, R. A., W. C. Reade, L. R. Collins, and J. Verlinde, 1998: Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci., 55, 1965–1976.

    Article  Google Scholar 

  • Simpson, J., 1971: On cumulus entrainment and one-dimensional models. J. Atmos. Sci., 28, 449–455.

    Article  Google Scholar 

  • Simpson, J., 1972: Reply. J. Atmos. Sci., 29, 220–225.

    Article  Google Scholar 

  • Simpson, J., and W-K. Tao, 1993: Goddard cumulus ensemble model. Part II: Applications for studying cloud precipitation processes and for NASA TRMM. Terr. Atmos. Oceanic Sci., 4, 73–116.

    Google Scholar 

  • Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471–489.

    Article  Google Scholar 

  • Snook, J. S., and R. A. Pielke, 1995: Diagnosing a Colorado heavy snow event with a nonhydrostatic mesoscale numerical model structured for operational use. Wea. Forecasting, 10, 261–285.

    Article  Google Scholar 

  • Soong, S. T., and Y. Ogura, 1973: A comparison between axisymmetric and slab-symmetric cumulus cloud models. J. Atmos. Sci., 30, 879–893.

    Article  Google Scholar 

  • Squires, P, and J. S. Turner, 1962: An entraining jet model for cumulonimbus updraughts. Tellus, 14, (4), 422–434.

    Article  Google Scholar 

  • Steiner, J. T., 1979: Comments on “Cumulus Convection in shear flow—Three-dimensional numerical experiments.” J. Atmos. Sci., 36, 1609–1611.

    Article  Google Scholar 

  • Stephens, G. L., 1983: The influence of radiative transfer on the mass and heat budgets of ice crystals falling in the atmosphere. J. Atmos. Sci., 40, 1729–1739.

    Article  Google Scholar 

  • Stevens, B., G. Feingold, W. R. Cotton, and R. L. Walko, 1996: Elements of the microphysical structure of numerically simulated stratocumulus. J. Atmos. Sci., 53, 980–1006.

    Article  Google Scholar 

  • Stevens, B., G. W. R. Cotton, G. Feingold, and C.-H. Moeng, 1998: Large-eddy simulations of strongly precipitating, shallow, stratocumulus-topped boundary layers. J. Atmos. Sci., 55, 3616–3638.

    Article  Google Scholar 

  • Stohlgren, T. J., T. N. Chase, R. A. Pielke, T. G. F. Kittel, and J. Baron, 1998: Evidence that local land use practices influence regional climate and vegetation patterns in adjacent natural areas. Global Change Biol., 4, 495–504.

    Article  Google Scholar 

  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Meteor., 4, 91–94.

    Article  Google Scholar 

  • Tao, W-K., and J. Simpson, 1989: A further study of cumulus interactions and mergers: Three-dimensional simulations with trajectory analyses. J. Atmos. Sci., 46, 2974–3004.

    Article  Google Scholar 

  • Tao, W-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 35–72.

    Google Scholar 

  • Tao, W-K., and S.-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study.. 1. Atmos. Sci., 44, 3175–3187.

    Article  Google Scholar 

  • Taylor, C. M., R. J. Harding, R. A. Pielke Sr., P. L. Vidale, R. L. Walko, and J. W. Pomeroy, 1998: Snow breezes in the boreal forest. J. Geophys. Res., 103, 23 087–23 101.

    Google Scholar 

  • Telford, J. W., and S. K. Chai, 1980: A new aspect of condensation theory. Pageoph., 118, 720–742.

    Article  Google Scholar 

  • Telford, J. W., T. S. Keck, and S. K. Chai, 1984: Entrainment at cloud tops and the droplet spectra. J. Atmos. Sci., 41, 3170–3179.

    Article  Google Scholar 

  • Tripoli, G., and W. R. Cotton, 1989a: A numerical study of an observed orogenic mesoscale convective system. Part 1: Simulated genesis and comparison with observations. Mon. Wea. Rev., 117, 273–304.

    Article  Google Scholar 

  • Tripoli, G., and W. R. Cotton, 1989b: A numerical study of an observed orogenic mesoscale convective system. Part 2: Analysis of governing dynamics. Mon. Wea. Rev., 117, 305–328.

    Article  Google Scholar 

  • Uliasz, M., R. A. Stocker, and R. A. Pielke, 1996: Regional modeling of air pollution transport in the southwestern United States. Environmental Modeling, Vol. 3, P. Zannetti, Ed., Computational Mechanics Publications, 145–181.

    Google Scholar 

  • Walko, R. L., W. R. Cotton, and R. A. Pielke, 1992: Large eddy simulations of the effects of hilly terrain on the convective boundary layer. Bound.-Layer Meteor., 53, 133–150.

    Article  Google Scholar 

  • Walko, R. L., and Coauthors, 2000: Coupled atmosphere–biophysics–hydrology models for environmental modeling. J. Appl. Meteor., 39, 931–944.

    Article  Google Scholar 

  • Wang, J. Y., 1983: A quasi-one-dimensional, time-dependent, and nonprecipitating cumulus cloud model: On the bimodal distribution of cumulus cloud height. J. Atmos. Sci., 40, 651–664.

    Article  Google Scholar 

  • Warner, J., 1970: On steady-state one-dimensional models of cumulus convection. J. Atmos. Sci., 27, 1035–1040.

    Article  Google Scholar 

  • Weinstein, A. I., and L. G. Davis, 1968: A parameterized numerical model of cumulus convection. Rep. 11, NSF Grant GA-777, Dept. of Meteorology, Pennsylvania State University, State College, 42 pp.

    Google Scholar 

  • Weissbluth, M. J., and W. R. Cotton, 1993: The representation of convection in mesoscale models. Part I: Scheme fabrication and calibration. J. Atmos. Sci., 50, 3852–3872.

    Article  Google Scholar 

  • Woodward, E. B., 1959: The motion in and around isolated thermals. Quart. J. Roy. Meteor. Soc., 85, 144–151.

    Article  Google Scholar 

  • Wu, T., 1999: Numerical modeling study of the November 26, 1991 cirrus event. Ph.D. dissertation, Colorado State University, 188 pp.

    Google Scholar 

  • Wu, T., W. R. Cotton, and W. Y. Y. Cheng, 2000: Radiative effects on the diffusional growth of ice particles in cirrus clouds. J. Atmos. Sci., 57, 2892–2904.

    Article  Google Scholar 

  • Zeng, X., and R. A. Pielke, I995a: Further study on the predictability of landscape-induced atmospheric flow. J. Atmos. Sci., 52,1680–1698.

    Google Scholar 

  • Zeng, X., and R. A. Pielke, 1995b: Landscape-induced atmospheric flow and its parameterization in large-scale numerical models. J. Climate, 8, 1156–1177.

    Article  Google Scholar 

  • Ziegler, C. L., W. J. Martin, R. A. Pielke, and R. L. Walko, 1995: A modeling study of the dryline. J. Atmos. Sci., 52, 263–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 American Meteorological Society

About this chapter

Cite this chapter

Cotton, W.R. (2003). Cloud Models: Their Evolution and Future Challenges. In: Tao, WK., Adler, R. (eds) Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM). Meteorological Monographs. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-878220-63-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-878220-63-9_8

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-878220-63-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics