Isotopic Variations and Internal Storm Dynamics in the Amazon Basin

  • Isabella Angelini
  • Michael Garstang
  • Stephen Macko
  • Robert Swap
  • Derek Stewart
  • Hillândia B. Cunha
Part of the Meteorological Monographs book series (METEOR)


Rainwater samples taken every 10 min, protected from fractionation by a hydrocarbon layer and collected every 12 h, are subjected to isotopic analyses to obtain a time series of oxygen and deuterium values through successive rain events in the eastern and central Amazon basin. Satellite imagery is used to characterize the rain events, and rain rates from recording rain gauges are used to delineate changes in internal rain production within each storm.

Three clear isotopic signals are seen in the storm systems examined. These three responses consist of depletion of heavy isotopes by as much as −6.7% in a single storm, depletion followed by enrichment, and little change in the isotopic signal. Each of these changes in isotopic content of the rainwater can be related to the internal rain-rate production, evaporation/condensation processes together with the implied convective/stratiform circulations of the storm. The storm-related isotopic results suggest, in addition to illuminating the internal dynamics of these storm systems, that sampling of rain from any given rain-producing system can yield significantly different isotopic values. Conclusions about the large-scale hydrologic cycle and the sources and pathways followed by water contained within rain must take these internal storm variations in isotopic values into account.


Tropical Rainfall Measure Mission Rain Rate Amazon Basin Heavy Isotope Squall Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adar, E., and A. Long, 1987: Oxygen-18 and deuterium distribution in rainfall, runoff and groundwater in a small semi-arid basin: The Aravaipa Valley in the Sonora Desert, Arizona. IAEA Rep. SM-299/135, 15 pp.Google Scholar
  2. Araguâs-Araguâs, L., K. Froehlich, and K. Rozanski, 2000: Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Proc., 14, 1341–1355.CrossRefGoogle Scholar
  3. Begemann, E, and W. F. Libby, 1957: Continental water balance, ground water inventory, and storage times, surface ocean mixing rates and world-wide circulation patterns from cosmic-ray and bomb tritium. Geochim. Cosmochim. Acta, 12, 277–296.CrossRefGoogle Scholar
  4. Cohen, J., M. Dias, and C. Nobre, 1995: Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev., 123, 3163–3174.CrossRefGoogle Scholar
  5. Cortes, A., and R. N. Farvolden, 1989: Isotope studies of precipitation and groundwater in the Sierra de Las Cruces, Mexico. J. Hydrol., 107, 147–153.CrossRefGoogle Scholar
  6. Dansgaard, W., 1953: The abundance of 180 in atmospheric water and water vapor. Tellus, 5, 461–469.CrossRefGoogle Scholar
  7. Dansgaard, W., 1964: Stable isotopes in precipitation. Tellus, 4, 436–468.CrossRefGoogle Scholar
  8. Ehhalt, D., K. Knott, J. E Nagel, and J. C. Vogel, 1963: Deuterium and oxygen 18 in rain water. J. Geophys. Res., 68, 3775–3781.CrossRefGoogle Scholar
  9. Epstein, S., and T. Mayeda, 1953: Variation of 018 content of waters from natural sources. Geochim. Cosmochim. Acta, 4, 213–224.CrossRefGoogle Scholar
  10. Faure, G., 1986: Principles of Isotope Geology. John Wiley and Sons, 589 pp.Google Scholar
  11. Friedman, I., G. I. Smith, J. D. Gleason, A. Warde, and J. M. Harris, 1992: Stable isotope composition of waters in southeastern California: 1. Modern precipitation. J. Geophys. Res., 97, 5795–5812.CrossRefGoogle Scholar
  12. Gamache, J. E, and R. A. Houze, 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118–135.CrossRefGoogle Scholar
  13. Gamache, J. E, and R. A. Houze, 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sci., 40, 1835–1850.CrossRefGoogle Scholar
  14. Gamache, J. E, and R. A. Houze, 1985: Further analysis of the composite wind and thermodyanic structure of the 12 September GATE squall line. Mon. Wea. Rev., 113, 1241–1259.CrossRefGoogle Scholar
  15. Garstang, M.,and D. R. Fitzjarrald, 1999: Observations of Surface to Atmosphere Interactions in the Tropics. Oxford University Press Inc., 405 pp.Google Scholar
  16. Garstang, M., H. Massie, J. Halverson, S. Greco, and J. Scala, 1994: Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Wea. Rev., 122, 608–622.CrossRefGoogle Scholar
  17. Garstang, M., and Coauthors, 1988: Trace gas exchanges and convective transports over the Amazonian rainforest. J. Geophys. Res., 93, 1528–1550.CrossRefGoogle Scholar
  18. Gedzelman, S. D., and R. Arnold, 1994: Modeling the isotopic composition of precipitation. J. Geophys. Res., 99, 10 455–10 471.Google Scholar
  19. Gray, J., K. D. Hage, and H. W. Mary, 1974: An automatic sequential rainfall sampler. Rev. Sci. Instr., 45, 1517–1519.CrossRefGoogle Scholar
  20. Greco, S., R. Swap, M. Garstang, S. Ulanski, M. Shipham, R. Harriss, R. Talbot, M. Andreae, and P. Artaxo, 1990: Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B. J. Geophys. Res., 95, 17 001–17 014.Google Scholar
  21. Greco, S., J. Scala, J. Halverson, H. L. Massie, W-K. Tao, and M. Garstang, 1994. Amazon coastal squall lines. Part II: Heat and moisture transports. Mon. Wea. Rev., 122, 623–635.CrossRefGoogle Scholar
  22. Hoefs, J.,1987: Stable Isotope Geochemistry. Springer-Verlag, 241 pp.Google Scholar
  23. Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall line system. Mon. Wea. Rev., 105, 1540–1567.CrossRefGoogle Scholar
  24. Houze, R. A., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425–461.CrossRefGoogle Scholar
  25. Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.Google Scholar
  26. Ingraham, N. L., B. F. Lyles, R. L. Jacobson, and J. W. Hess, 1991: Stable isotopic study of precipitation and spring discharge in southern Nevada. J. Hydrol., 125, 243–258.CrossRefGoogle Scholar
  27. Kinzer, G. D., and R. Gunn, 1951: The evaporation, temperature and thermal relaxation time of freely falling waterdrops. J. Meteor., 8, 71–83.CrossRefGoogle Scholar
  28. Leary, C. A., and R. A. Houze Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669–679.CrossRefGoogle Scholar
  29. Matsui, E., E. Salati, M. N. Ribeiro, C. M. Reis, A. C. Tancredi, and J. R. Gat, 1983: Precipitation in the central Amazon Basin: The isotopic composition of rain and atmospheric moisture at Belém and Manaus. Acta Amazonica, 13, 307–369.CrossRefGoogle Scholar
  30. Matsuo, S., and I. Friedman, 1967: Deuterium content in fractionally collected rainwater. J. Geophys. Res., 72, 6374–6376.CrossRefGoogle Scholar
  31. Miyake, Y., O. Matsubaya, and C. Nishihara, 1968: An isotopic study on meteoric precipitation. Pap. Meteorol. Geophys., 19, 243266.Google Scholar
  32. Rindsberger, M., Sh. Jaffe, Sh. Rahamim, and J. R. Gat, 1990: Patterns of the isotopic composition of precipitation in time and space: Data from the Israeli Storm Water Collection Program. Tellus, 42B, 263–271.CrossRefGoogle Scholar
  33. Salati, E., A. Dall’Olio, E. Matsui, and J. R. Gat, 1979: Recycling of water in the Amazon Basin: An isotopic study. Water Resour. Res., 15, 1250–1258.CrossRefGoogle Scholar
  34. Schirmer, T., 1995: Die Zusammensetzung (D, 180 und ausgewählte Inhaltsstoffe) von Einzelniederschlagsereignissen Göttingens und Clausthal-Zellerfelds für den Zeitraum vom Mai 93 bis zum Marz 94. Diplomarbeit, University of Göttingen.Google Scholar
  35. Scholl, M. A., S. E. Ingebritsen, C. J. Janik, and J. P. Kauahikaua, 1996: Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea Volcano Area, Hawaii. Water Resour. Res., 32, 3525–3537.CrossRefGoogle Scholar
  36. Stewart, M. K., 1975: Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res., 80, 1133–1146.CrossRefGoogle Scholar
  37. Swap, R. J., August 1990: The nature and origin of central Amazonian wet season rainfall. M.S. thesis, Department of Environmental Sciences, University of Virginia, 116 pp.Google Scholar
  38. Swap, R. J., M. Garstang, S. Greco, R. Talbot, and P. Kâllberg, 1992: Saharan dust in the Amazon Basin. Tellus, 44B, 133–149.CrossRefGoogle Scholar
  39. Tao, W.-K., and J. Simpson, 1989: Modeling study of a tropical squall-type convective line. J. Atmos. Sci., 46, 177–202.CrossRefGoogle Scholar
  40. Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355–371.CrossRefGoogle Scholar
  41. C. R. Williams, W. L. Ecklund, and K. S. Gage, 1999: Tropical rainfall associated with convective and stratiform clouds: Intercomparison of disdrometer and profiler measurements. J. Appl. Meteor., 38, 302–320.CrossRefGoogle Scholar
  42. Ulanski, S. L., and M. Garstang, 1978a: The role of surface divergence and vorticity in the life cycle of convective rainfall. Part I: Observations and analysis. J. Atmos. Sci., 35, 1047–1062.CrossRefGoogle Scholar
  43. Ulanski, S. L., and M. Garstang, 1978b: The role of surface divergence and vorticity in the life cycle of convective rainfall. Part II: Descriptive model. J. Atmos. Sci., 35, 1063–1069.CrossRefGoogle Scholar
  44. Victoria, R. L., L. A. Martinelli, J. Mortatti, and J. Richey, 1991: Mechanisms of water recycling in the Amazon Basin: Isotopic insights. Ambio, 20, 384–387.Google Scholar
  45. Wei, T., and R. A. Houze Jr., 1987: The GATE squall line of 9–10 August 1974. Adv. Atmos. Sci., 4, 85–92.CrossRefGoogle Scholar
  46. Woodcock, A. H., and I. Friedman, 1963: The deuterium content of raindrops. J. Geophys. Res., 68, 4477–4483.CrossRefGoogle Scholar
  47. Zipser, E. J., 1969: The role of organized unsaturated downdrafts in the structure and decay of an equatorial disturbance. J. Appl. Meteor., 8, 799–814.CrossRefGoogle Scholar

Copyright information

© American Meteorological Society 2003

Authors and Affiliations

  • Isabella Angelini
    • 1
  • Michael Garstang
    • 1
  • Stephen Macko
    • 1
  • Robert Swap
    • 1
  • Derek Stewart
    • 2
  • Hillândia B. Cunha
    • 3
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of PhysicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.Instituto Nacional Pesquisas da AmazôniaManausBrazil

Personalised recommendations