Some Views On “Hot Towers” after 50 Years of Tropical Field Programs and Two Years of TRMM Data

  • Edward J. Zipser
Part of the Meteorological Monographs book series (METEOR)

Abstract

The “hot tower” hypothesis requires the existence of deep cumulonimbus clouds in the deep Tropics as essential agents, which accomplish the mass and energy transport essential for the maintenance of the general circulation. As the role of the deep convective clouds has been generally accepted, the popularity of referring to these deep “hot” towers as undilute towers also has gained acceptance. This paper examines the consequences of assuming that the deep convective clouds over tropical oceans consist of undilute ascent from the subcloud layer.

Using simple applications of parcel theory, it is concluded that observed properties of typical cumulonimbus updrafts in low- to midtroposphere over tropical oceans are inconsistent with the presence of undilute updrafts. Such undilute updrafts are far more consistent with observations in severe storms of midlatitudes. The observations over tropical oceans can be hypothetically explained by assuming large dilution of updrafts by entrainment below about 500 hPa, followed by freezing of condensate. This freezing and subsequent ascent along an ice adiabat reinvigorates the updrafts and permits them to reach the tropical tropopause with the necessary high values of moist static energy, as the hot tower hypothesis requires. The large difference observed between ocean and land clouds can be explained by assuming slightly smaller entrainment rates for clouds over land. These small entrainment differences have a very large effect on updrafts in the middle and upper troposphere and can presumably account for the large differences in convective vigor, ice scattering, and lightning flash rates that are observed. It follows that convective available potential energy (CAPE) is not a particularly good predictor of the behavior of deep convection.

Using the Tropical Rainfall Measuring Mission (TRMM) to map a proxy for the most intense storms on earth between 36°S and 36°N, they are found mostly outside the deep Tropics, with the notable exception of tropical Africa.

Keywords

Tropical Ocean Liquid Water Content Cloud Base Moist Static Energy Deep Convective Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, M. B., H. J. Christian, and J. Latham, 1995: A computational study of the relationships linking lightning frequency and other thundercloud parameters. Quart. J. Roy. Meteor. Soc., 121, 1525–1548.CrossRefGoogle Scholar
  2. Baker, M. B., A. M. Blyth, H. J. Christian, J. Latham, K. L. Miller, and A. M. Gadian, 1999: Relationships between lightning activity and various thundercloud parameters: Satellite and modeling studies. Atmos. Res., 51 (3–4), 221–236.CrossRefGoogle Scholar
  3. Balsley, B. B., L. W. Ecklund, D. A. Carter, A. C. Riddle, and K. S. Gage, 1988: Average vertical motions in the tropical atmosphere observed by a radar wind profiler on Ponape (7°N latitude, 157°E longitude). J. Atmos. Sci., 45, 396–405.CrossRefGoogle Scholar
  4. Black, R. A., and J. Hallett, 1986: Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43, 802–822.CrossRefGoogle Scholar
  5. Blanchard, D. O., 1998: Assessing the vertical distribution of convective available potential energy. Wea. Forecasting, 13, 870877.Google Scholar
  6. Bluestein, H. B., E. W. McCaul Jr., G. P. Byrd, and G. R. Woodall, 1988: Mobile sounding observations of a tornadic storm near the dryline: The Canadian TX storm of 7 May 1986. Mon. Wea. Rev., 116, 1790–1804.CrossRefGoogle Scholar
  7. Blyth, A. M., 1993: Entrainment in cumulus clouds. J. Appl. Meteor., 32, 626–641.CrossRefGoogle Scholar
  8. Bosart, L. E, and J. W. Nielsen, 1993: Radiosonde penetration of an undilute cumulonimbus anvil. Mon. Wea. Rev., 121, 1688–1702.CrossRefGoogle Scholar
  9. Braham, R. R., 1952: The water and energy budgets of the thunderstorm and their relation to thunderstorm development. J. Meteor., 9, 227–242.CrossRefGoogle Scholar
  10. Cotton, W. R., and R. A. Anthes, 1989: Storm and Cloud Dynamics. Academic Press, 883 pp.Google Scholar
  11. Davies-Jones, R. P, 1974: Discussion of measurements inside high- speed thunderstorm updrafts. J. Appl. Meteor., 13, 710–717.CrossRefGoogle Scholar
  12. Ebert, E. E., and G. J. Holland, 1992: Observations of record cold cloud top temperatures in tropical cyclone Hilda (1990). Mon. Wea. Rev., 120, 2240–2251.CrossRefGoogle Scholar
  13. Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.Google Scholar
  14. Ferrier, B. S., and R. A. Houze Jr., 1989: One-dimensional time-dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46, 330–352.CrossRefGoogle Scholar
  15. Goodman, S. J., and H. Christian, 1993: Global observations of lightning. Atlas of Satellite Observations Related to Global Change. R. J. Gurney, J. L. Foster, and C. L. Parkinson, Eds., Cambridge University Press, 191–219.Google Scholar
  16. Goodman, S. J., D. E. Buechler, K. Knupp, D. Driscoll, and E. W. McCaul, 2000: The 1997–98 El Nino event and related wintertime lightning variations in the southeastern United States. Geophys. Res. Lett., 27 (4), 541–544.CrossRefGoogle Scholar
  17. Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13, 795–809.CrossRefGoogle Scholar
  18. Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp. Igau, R. C., M. A. LeMone, and D. Wei, 1999: Updraft and downdraft cores in TOGA-COARE: Why so many buoyant downdraft cores? J. Atmos. Sci., 56, 2233–2245.Google Scholar
  19. Johnson, R. H., and D. C. Kriete, 1982: Thermodynamic and circulation characteristics of winter monsoon tropical mesoscale convection. Mon. Wea. Rev., 110, 1898–1911.CrossRefGoogle Scholar
  20. Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 2397–2418.CrossRefGoogle Scholar
  21. Johnson, R. H., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621–640.CrossRefGoogle Scholar
  22. Johnson, R. H., E. J. Zipser, and M. A. LeMone, 1985: Vertical motion in intense hurricanes. J. Atmos. Sci., 42, 839–856.CrossRefGoogle Scholar
  23. Keenan, T. D., and R. E. Carbone, 1992: A preliminary morphology of precipitation systems in tropical northern Australia. Quart. J. Roy. Meteor. Soc., 118 (504), 283–326.CrossRefGoogle Scholar
  24. Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.CrossRefGoogle Scholar
  25. Laing, A. G., and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389–405.CrossRefGoogle Scholar
  26. LeMone, M. A., and E. J. Zipser, 1980: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity, and mass flux. J. Atmos. Sci., 37, 2444–2457.CrossRefGoogle Scholar
  27. LeMone, M. A., E. J. Zipser, and S. B. Trier, 1998: The role of environmental shear and CAPE in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55, 3493–3518.CrossRefGoogle Scholar
  28. Lucas, C., M. A. LeMone, and E. J. Zipser, 1994: Vertical velocity in oceanic convection off tropical Australia. J. Atmos. Sci., 51 (21), 3183–3193.CrossRefGoogle Scholar
  29. Lucas, C., E. J. Zipser, and M. A. LeMone, 1996: Reply. J. Atmos, Sci., 53, 1212–1216.CrossRefGoogle Scholar
  30. McCollum, J. R., A. Gruber, and M. B. Ba, 2000: Discrepancy between gauges and satellite estimates of rainfall in equatorial Africa. J. Appl. Meteor., 39, 666–679.CrossRefGoogle Scholar
  31. Miller, L. J., and J. C. Fankhauser, 1983: Radar echo structure, air motion and hail formation in a large stationary multi-cellular thunderstorm. J. Atmos. Sci., 40, 2339–2418.CrossRefGoogle Scholar
  32. Miller, L. J., J. D. Tuttle, and C. A. Knight, 1988: Airflow and hail growth in a severe northern high plains supercell. J. Atmos. Sci., 45, 736–762.CrossRefGoogle Scholar
  33. Mohr, K. I., and E. J. Zipser, 1996: Mesoscale convective systems defined by their 85 GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents. Mon. Wea. Rev., 124, 2417–2437.CrossRefGoogle Scholar
  34. Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the ice scattering signature. J. Appl. Meteor., 38, 596–606.CrossRefGoogle Scholar
  35. Musil, D. J., A. J. Heymsfield, and P. L. Smith, 1986: Microphysical characteristics of a well-developed weak echo region in a High Plains supercell thunderstorm. J. Climate Appl. Meteor., 25, 1037–1051.CrossRefGoogle Scholar
  36. Nelson, S. P, 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 1965–1983.CrossRefGoogle Scholar
  37. Nesbitt, S. W., E. J. Zipser, and D. J. Cecil, 2000: A census of precipitation features in the tropics using TRMM: Radar, ice scattering, and lightning observations. J. Climate, 13, 4087–4106.CrossRefGoogle Scholar
  38. Ooyama, K. V., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47, 2580–2593.CrossRefGoogle Scholar
  39. Orville, R. E., and R. W. Henderson, 1986: Global distribution of midnight lightning: September 1977 to August 1978. Mon. Wea. Rev., 114, 2640–2653.CrossRefGoogle Scholar
  40. Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res., 103, 14 025–14 040.Google Scholar
  41. Riehl, H. 1979: Climate and Weather in the Tropics. Academic Press, 611 pp.Google Scholar
  42. Riehl, H. and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503–538.Google Scholar
  43. Riehl, H. and J. Simpson, 1979: The heat balance of the equatorial trough zone, revisited. Beitr. Phys. Atmos., 52, 287–305.Google Scholar
  44. Rutledge, S. A., E. R. Williams, and T. D. Keenan, 1992: The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results. Bull. Amer. Meteor. Soc., 73, 3–16.CrossRefGoogle Scholar
  45. Sax, R. I., 1969: The importance of natural glaciation on the modification of tropical maritime cumuli by silver iodide seeding. J. Appl. Meteor., 8, 92–104.CrossRefGoogle Scholar
  46. Simpson, J., and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471–489.CrossRefGoogle Scholar
  47. Simpson, J., R. E Adler, and G. R. North, 1988: Proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295.CrossRefGoogle Scholar
  48. Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus mergers in the Maritime Continent region. Meteor. Atmos. Phys., 51, 73–99.CrossRefGoogle Scholar
  49. Simpson, J., C. Kummerow, W.-K. Tao, and R. E Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 19–36.CrossRefGoogle Scholar
  50. Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 2643–2661.CrossRefGoogle Scholar
  51. Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal.. 1. Atmos. Oceanic Technol., 6, 254–273.CrossRefGoogle Scholar
  52. Vivekanandan, T., J. Turk, and V. N. Bringi, 1991: Ice water path estimation and characterization using passive microwave radiometry. J. Appl. Meteor., 30, 1407–1421.CrossRefGoogle Scholar
  53. Wei, D., A. M. Blyth, and D. J. Raymond, 1998: Buoyancy of convective clouds in TOGA COARE. J. Atmos. Sci., 55, 3381–3391.CrossRefGoogle Scholar
  54. Williams, E. R., S. A. Rutledge, S. G. Geotis, N. Renno, E. Rasmussen, and T. Rickenbach, 1992: A radar and electrical study of tropical “hot towers.” J. Atmos. Sci., 49, 1386–1395.CrossRefGoogle Scholar
  55. Willis, P. T., and J. Hallett, 1991: Microphysical measurements from an aircraft ascending with a growing isolated maritime cumulus tower. J. Atmos. Sci., 48, 283–300.CrossRefGoogle Scholar
  56. Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 1471–1479.CrossRefGoogle Scholar
  57. Zipser, E. J., 1994: Deep cumulonimbus cloud systems in the Tropics with and without lightning. Mon. Wea. Rev., 122, 1837–1851.CrossRefGoogle Scholar
  58. Zipser, E. J., and M. A. LeMone, 1980: Cumulonimbus vertical velocity events in GATE. Part II: Synthesis and model core structure. J. Atmos. Sci., 37, 2458–2469.CrossRefGoogle Scholar
  59. Zipser, E. J., and K. Lutz, 1994: The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Mon. Wea. Rev., 122, 1751–1759.CrossRefGoogle Scholar

Copyright information

© American Meteorological Society 2003

Authors and Affiliations

  • Edward J. Zipser
    • 1
  1. 1.Department of MeteorologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations