Advertisement

From Hot Towers to TRMM: Joanne Simpson and Advances in Tropical Convection Research

  • Robert A. HouzeJr.
Part of the Meteorological Monographs book series (METEOR)

Abstract

Joanne Simpson began contributing to advances in tropical convection about half a century ago. The hot tower hypothesis jointly put forth by Joanne Simpson and Herbert Riehl postulated that deep convective clouds populating the “equatorial trough zone” were responsible for transporting heat from the boundary layer to the upper troposphere. This hypothesis was the beginning of a 50-year quest to describe and understand near-equatorial deep convection. Tropical field experiments in the 1970s [Global Atmospheric Research Program Atlantic Tropical Experiment (GATE) and the Monsoon Experiment (MONEX)] in which Joanne participated documented the mesoscale structure of the convective systems, in particular the deep, stratiform, dynamically active mesoscale clouds that are connected with the hot towers. In the 1980s these new data led to better understanding of how tropical mesoscale convective systems vertically transport heat and momentum. The role of the mesoscale stratiform circulation in this transport was quantified. Tropical field work in the 1990s [especially the Coupled Ocean-Atmosphere Response Experiment (COARE), in which Joanne again participated] showed the importance of a still larger scale of convective organization, the “supercluster.” This larger scale of organization has a middle-level inflow circulation that appears to be an important transporter of momentum. The mesoscale and supercluster scale of organization in tropical convective systems are associated with the stratiform components of the cloud systems. Joint analysis of satellite and radar data from COARE show a complex, possibly chaotic relationship between cloud-top temperature and the size of a stratiform precipitation area. The Tropical Rainfall Measuring Mission (TRMM) satellite, for which Joanne served as project scientist for nearly a decade, is now providing a global census of mesoscale and supercluster-scale organization of tropical convection. The TRMM dataset should therefore provide some closure to the question of the nature of deep convection in the equatorial trough zone.

Keywords

Tropical Rainfall Measure Mission Convective System Mesoscale Convective System Squall Line Tropical Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. K., E. W. Ferguson, and V. J. Oliver, 1966: The use of satellite pictures in weather analysis and forecasting. WMO Tech. Note 75, 184 pp.Google Scholar
  2. Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus ensemble with the large-scale environment: part I. J. Atmos. Sci., 31, 674–701.CrossRefGoogle Scholar
  3. Awaka, J., T. Iguchi, H. Kumagai, and K. Okamoto, 1997: Rain type classification algorithm for TRMM Precipitation Radar. Proc. Int. Geoscience and Remote Sensing Symp., Singapore, IEEE, 1633–1635.Google Scholar
  4. Chalon, J.-P, G. Jaubert, E Roux, and J.-P. Lafore, 1988: The west African squall line observed on 23 June 1981: Mesoscale structure and transports. J. Atmos. Sci., 45, 2744–2763.CrossRefGoogle Scholar
  5. Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and lifecycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357–388.CrossRefGoogle Scholar
  6. Chen, S. S., and B. E. Mapes, 1996: Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53, 1380–1409.CrossRefGoogle Scholar
  7. Cheng, C.-P, and R. A. flouze Jr., 1979: The distribution of convective and mesoscale precipitation in GATE radar echo patterns. Mon. Wea. Rev., 107, 1370–1381.CrossRefGoogle Scholar
  8. Chong, M., and D. Hauser, 1989: A tropical squall line observed during the COPT 81 experiment in West Africa. Part II: Water budget. Mon. Wea. Rev., 117, 728–744.CrossRefGoogle Scholar
  9. Chong, M., P. Amayenc, G. Scialom, and J. Testud, 1987: A tropical squall line observed during the COPT 81 experiment in West Africa. Part I: Kinematic structure inferred from dual-Doppler radar data. Mon. Wea. Rev., 115, 670–694.CrossRefGoogle Scholar
  10. Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41, 933–960.CrossRefGoogle Scholar
  11. Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 1111–1143.CrossRefGoogle Scholar
  12. Gamache, J. F., and R. A. Houze Jr., 1982: Mesoscale air motions associated with a tropical squall line. Mon. Wea. Rev., 110, 118–135.CrossRefGoogle Scholar
  13. Gamache, J. F., and R. A. Houze Jr., 1983: Water budget of a mesoscale convective system in the tropics. J. Atmos. Sei., 40, 1835–1850.CrossRefGoogle Scholar
  14. Gamache, J. F., and R. A. Houze Jr., 1985: Further analysis of the composite wind and thermodynamic structure of the 12 September GATE squall line. Mon. Wea. Rev., 113, 1241–1259.CrossRefGoogle Scholar
  15. Godfrey, J. S., R. A. Houze Jr., R. H. Johnson, R. Lukas, J.-L. Redelsperger, A. Sunni, and R. Weller, 1998: COARE: An interim report. J. Geophys. Res., 103, 14395–14450.CrossRefGoogle Scholar
  16. Hartmann, D. L., H. H. Hendon, and R. A. Houze Jr., 1984: Some implications of the mesoscale circulations in tropical cloud clusters for large-scale dynamics and climate. J. Atmos. Sci., 41, 113–121.CrossRefGoogle Scholar
  17. Haynes, P. H., and M. E. Maclntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841.CrossRefGoogle Scholar
  18. Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 1540–1567.CrossRefGoogle Scholar
  19. Houze, R. A., Jr., 1982: Cloud clusters and large-scale vertical motions in the tropics. J. Meteor. Soc. Japan, 60, 396–410.Google Scholar
  20. Houze, R. A., Jr., 1989: Observed structure of mesoscale convective systems and implications for large-scale heating. Quart. J. Roy. Meteor. Soc., 115, 425–461.CrossRefGoogle Scholar
  21. Houze, R. A., Jr., and A. K. Betts, 1981: Convection in GATE. Rev. Geophys. Space Phys., 19, 541–576.CrossRefGoogle Scholar
  22. Houze, R. A., Jr., and E. N. Rappaport, 1984: Air motions and precipitation structure of an early summer squall line over the eastern tropical Atlantic. J. Atmos. Sci., 41, 553–574.CrossRefGoogle Scholar
  23. Houze, R. A., Jr., and T. Wei, 1987: The GATE squall line of 9–10 August 1974. Adv. Atmos. Sci., 4, 85–92.CrossRefGoogle Scholar
  24. Houze, R. A., Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter, 2000: Convection over the Pacific warm pool in relation to the atmospheric Kelvin-Rossby wave. J. Atmos. Sci., 57, 3058–3089.CrossRefGoogle Scholar
  25. Johnson, R. H., and R. A. Houze Jr., 1987: Precipitating cloud systems of the Asian monsoon. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., Clarendon Press, 298–353.Google Scholar
  26. Kingsmill, D. E., and R. A. Houze Jr., 1999a: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool: An airborne Doppler radar survey. Quart. J. Roy. Meteor. Soc., 125, 1165–1207.CrossRefGoogle Scholar
  27. Kingsmill, D. E., and R. A. Houze Jr., 1999b: Thermodynamic characteristics of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125, 1209–1229.CrossRefGoogle Scholar
  28. Kuettner, J. E, and D. E. Parker, 1976: GATE: Report on the field phase. Bull. Amer. Meteor. Soc., 57, 11–27.Google Scholar
  29. Lafore, J. P., and M. W. Moncrieff, 1989: A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines. J. Atmos. Sci., 46, 52 1544.Google Scholar
  30. Leary, C. A., 1984: Precipitation structure of the cloud clusters in a tropical easterly wave. Mon. Wea. Rev., 112, 313–325.CrossRefGoogle Scholar
  31. Leary, C. A., and R. A. Houze Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457.Google Scholar
  32. LeMone, M. A., 1983: Momentum transport by a line of cumulonimbus. J. Atmos. Sci., 40, 1815–1834.CrossRefGoogle Scholar
  33. Lorenz, E. N., 1993: The Essence of Chaos. University of Washington Press, 227 pp.Google Scholar
  34. Malkus, J. S., 1952: The slopes of cumulus clouds in relation to external wind shear. Quart. J. Roy. Meteor. Soc., 78, 530–542.CrossRefGoogle Scholar
  35. Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 222–237.Google Scholar
  36. Malkus, J. S., and H. Riehl, 1964: Cloud Structure and Distributions over the Tropical Pacific Ocean. University of California Press, Berkeley, 229 pp.Google Scholar
  37. Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 2026–2037.CrossRefGoogle Scholar
  38. Mapes, B. E., and R. A. Houze Jr., 1995: Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52, 1807–1828.CrossRefGoogle Scholar
  39. Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Met. Soc., 102, 373–394.CrossRefGoogle Scholar
  40. Moncrieff, M. W., and E. Klinker, 1997: Organized convective systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case study. Quart. J. Roy. Met. Soc., 123, 805–827.CrossRefGoogle Scholar
  41. Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823–839.Google Scholar
  42. Ooyama, K. 1971: A theory on parameterization of cumulus convection. J. Meteor. Soc. Japan, 49, 744–756.Google Scholar
  43. Raymond, D. J., and A. M. Blyth, 1986: A stochastic mixing model for nonprecipitating cumulus clouds. J. Atmos. Sci., 43, 2708–2718.CrossRefGoogle Scholar
  44. Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503–538.Google Scholar
  45. Roux, E, 1988: The west African squall line, observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406–426.CrossRefGoogle Scholar
  46. Roux, E, J. Testud, M. Payen, and B. Pinty, 1984: West African squall-line thermodynamic structure retrieved from dual-Doppler radar observations. J. Atmos. Sci., 41, 3104–3121.CrossRefGoogle Scholar
  47. Schumacher, C., and R. A. Houze Jr., 2000: Comparison of radar data from the TRMM satellite and Kwajalein oceanic validation site. J. Appl. Meteor., 39, 2151–2164.CrossRefGoogle Scholar
  48. Shupiatsky, A. B., A. I. Korotov, V. D. Menshenin, R. S. Pastushkov, and M. Jovasevic, 1975: Radar investigations of evolution of clouds in the eastern Atlantic. GATE Rep. 14, vol. 2, International Council of Scientific Unions/World Meteorological Organization.Google Scholar
  49. Shupiatsky, A. B., A. I. Korotov, and R. S. Pastushkov, 1976: Radar investigations of the evolution of clouds in the East Atlantic. TROPEX-74, XXX, Ed., Vol. 1, Atmosphere (in Russian), Gidrometeoizdat, Leningrad, USSR, 508–514.Google Scholar
  50. Sommeria, G., and J. Testud, 1984: COPT81: A field experiment designed for the study of dynamics and electrical activity of deep convection in continental tropical regions. Bull. Amer. Meteor. Soc., 65, 4–10.CrossRefGoogle Scholar
  51. Sun, J., and F Roux, 1988: Thermodynamic structure of the trailing-stratiform regions of two west African squall lines. Ann. Geophys., 6, 659–670.Google Scholar
  52. Warner, C., J. Simpson, G. van Helvoirt, D. W. Martin, D. Suchman, and G. L. Austin, 1980: Deep convection on day 261 of GATE. Mon. Wea. Rev., 108, 169–194.CrossRefGoogle Scholar
  53. Webster, P. J., and R. Lukas, 1992: TOGA COARE: The coupled ocean–atmosphere response experiment. Bull. Amer. Meteor. Soc., 73, 1377–1416.CrossRefGoogle Scholar
  54. Williams, M., and R. A. Houze Jr., 1987: Satellite–observed characteristics of winter monsoon cloud clusters. Mon. Wea. Rev., 115, 505–519.CrossRefGoogle Scholar
  55. Yanai, M., S. Esbensen, and J. H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sei., 30, 611–627.CrossRefGoogle Scholar
  56. Yuter, S. E., and R. A. Houze Jr., 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Met. Soc., 124, 53–99.CrossRefGoogle Scholar
  57. Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799–814.CrossRefGoogle Scholar

Copyright information

© American Meteorological Society 2003

Authors and Affiliations

  • Robert A. HouzeJr.
    • 1
  1. 1.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations