Skip to main content

Corrosion in Different Environments

  • Chapter
Corrosion and Protection

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1762 Accesses

Abstract

Atmospheric corrosion is electrochemical corrosion in a system that consists of a metallic material, corrosion products and possibly other deposits, a surface layer of water (often more or less polluted), and the atmosphere. The general cathodic reaction is reduction of oxygen, which diffuses through the surface layer of water and deposits. As shown in Section 6.2.5, the thickness of the water film may have a large effect, but it is more familiar to relate atmospheric corrosion to other parameters. The main factors usually determining the accumulated corrosion effect are time of wetness, composition of surface electrolyte, and temperature. Figure 8.1 shows the result of corrosion under conditions implying frequent condensation of moisture in a relatively clean environment (humid, warm air in contact with cold metal).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kucera V, Mattson E. Atmospheric corrosion. In: Mansfeld F, editor. Corrosion Mechanisms. New York: Marcel Dekker, 1987.

    Google Scholar 

  2. Godard HP, Jepson WB, Bothwell MR, Kane RL. The corrosion of light metals. New York: John Wiley & Sons, 1967.

    Google Scholar 

  3. Roberge PR. Handbook of corrosion engineering. New York: Mc. Graw-Hill, 1999.

    Google Scholar 

  4. Shreir LL. Corrosion. Vol. 1. London-Boston: Newnes-Butterworths. 2nd Ed. 1978.

    Google Scholar 

  5. Haagenrud S, Kucera V, Atteraaas L. Atmospheric corrosion of unalloyed steel and zinc-4 years exposure at test sites in Scandinavia. Copenhagen: 9th Scandinavian Corrosion Congress 1983.

    Google Scholar 

  6. Henriksen JF. Norwegian Inst. of Air Research. Private communication, 1985.

    Google Scholar 

  7. Kilcullen MB, McKenzie M. Weathering steels. In: Corrosion in Civil Engineering. London: Institute of Engineering 1979.

    Google Scholar 

  8. Thomas R. Varmförzinkning som korrosionsskydd (Hot-dip galvanizing for corrosion protection), Nordisk Förzinknings Förening, Stockholm, 1969. In Swedish.

    Google Scholar 

  9. Carter VE. Atmospheric corrosion on non-ferous metals. In: Parkins RN, editor. Corrosion cesses. London: Applied Science Publishers 1982.

    Google Scholar 

  10. Uhlig HH. Corrosion and Corrosion Control. 2nd, Ed. New York: John Wiley & Sons 1971.

    Google Scholar 

  11. Metals Handbook. 9th Ed. Vol. 13th Corrosion. Metals Park, Ohio: ASM International, 1987.

    Google Scholar 

  12. Rogers TH. Marine Corrosion. London: George Newnes, 1969.

    Google Scholar 

  13. ASTM D1141. Standard Practice for Substitute Ocean Water. Philadelphia: American Society for Testing and Materials, ASTM, 1998.

    Google Scholar 

  14. Fontana MG, Greene ND. Corrosion Engineering. New York: McGraw-Hill, 1967, 1978, 1986.

    Google Scholar 

  15. Chandler KA. Marine and Offshore Corrosion. London: Butterworths & Co, 1985.

    Google Scholar 

  16. Bardal E, Drugli JM, Gartland PO. The behaviour of corrosion-resistant steels in seawater. A review. Corrosion Science, 35(1–4). 1993: 257–267.

    Article  Google Scholar 

  17. Romanoff M. Underground Corrosion. Circ. 579. National Bureau of Stdandard, (US). 1957.

    Google Scholar 

  18. Iverson WP. An overview of the anaerobic corrosion of underground metallic structures. Evidence for a new mechanism, In: Escalante E. editor. Underground Corrosion. ASTM STP 741. American Society for Testing and Materials, 1981.

    Google Scholar 

  19. Fisher KP, Bue B. Corrosion and corrosivity of steel in Norwegian marine sediments. In: Escalante E, editor. Underground Corrosion. ASTM STP 741. American Society for Testing and Materials, 1981.

    Google Scholar 

  20. Gjørv OE, Vennesland Ø, El-Busaidy AHS. Corrosion/76. Paper No 17. Houston, Texas: National Association of Corrosion Engineers, 1976.

    Google Scholar 

  21. Arup H. Galvanic action of steel in concrete. Glostrup, Denmark: Korrosionscentralen, Report, 1977.

    Google Scholar 

  22. Nürnberger U. Chloride corrosion of steel in concrete. Fundamental relationships-practical experience 1–2. Betonwek und Fertigteil-Technik, 601–704, 1984.

    Google Scholar 

  23. Vennesland Ø. Private communication. NTNU. Trondheim, 1994.

    Google Scholar 

  24. Elsener B, Zimmermann L, Bürchler D, Böhni H. Repair of reinforced concrete structures by electrochemical techniques-field experience. Proceedings Eurocorr’ 97. Trondheim, 1997.

    Google Scholar 

  25. Haldeman Ch, Schreyer A. 10 years of cathodic protection in concrete in Switzerland. Proc. Eurocorr’97. Trondheim, 1997.

    Google Scholar 

  26. COST 509 Corrosion and protection of metals in contact with concrete. Draft final report. Workshop September 1–3, Heriot-Watt University, Edinburgh, 1996, 127.

    Google Scholar 

  27. Houghton CJ, Westermark RV. Downhole corrosion mitigation in Ekofisk (North Sea) field. In: CO2 Corrosion in Oil and Gas Production, Selected Papers, Abstracts, and References. Houston: NACE Task Group T-1-3, 1984.

    Google Scholar 

  28. Duncan RN. Materials performance in Khuff gas service. Materials Performance, July 1980: 45–53.

    Google Scholar 

  29. Rogne T, Drugli JM. Unpublished work at SINTEF Corrosion Centre, Trondheim, 1993.

    Google Scholar 

  30. tMR 01-75. Sulfide Stress Cracking Resistant Metallic Material for Oil Field Equipment. Houston: NACE.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2004). Corrosion in Different Environments. In: Bardal, E. (eds) Corrosion and Protection. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-85233-845-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-85233-845-9_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-758-2

  • Online ISBN: 978-1-85233-845-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics