Skip to main content

Three-Dimensional Echocardiographic Evaluation of the Mitral Valve

  • Chapter
  • First Online:
Textbook of Real-Time Three Dimensional Echocardiography

Abstract

The mitral valve apparatus is a complex structure that can be affected by a multitude of acquired and congenital disorders. An optimal interaction of the different anatomic elements comprising the annulus, the leaflets, the chordae tendinae, the papillary muscles and the left atrial and left ventricular walls is necessary for its functional integrity. The interpretation of two-dimensional echocardiographic (2DE) images requires a complex mental integration of multiple image planes for a true understanding of anatomic and pathologic structures. One of the most significant developments of the last decade, particularly in the field of cardiac imaging, has been three dimensional echocardiography (3DE). The display of cardiac anatomy in three dimensions from any perspective has clear advantages over conventional 2D imaging and provides an insight into the functional and anatomic properties of cardiac structures. The benefits of 3DE are particularly well suited to the study of the mitral valve apparatus given its complex morphology and the importance of delineating its anatomy precisely in various pathological states. Comparing with 2DE, 3DE offers advantages for the morphologic and quantitative assessment of mitral valve stenosis, prolapse and regurgitation. The 3DE data sets can be acquired with the transthoracic or transesophageal approach. The development of a fully sampled matrix array transducer has enabled easy and fast acquisition of real-time 3DE volumetric imaging of the mitral valve from the transthoracic approach. It has sparked an emerging interest in using this methodology in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valocik G, Kamp O, Visser CA. Three-dimensional echocardiography in mitral valve disease. Eur J Echocardiogr. 2005;6:443–454.

    Article  PubMed  Google Scholar 

  2. Kaplan SR, Bashein G, Sheehan FH, Legget ME, Munt B, Li XN, et al. Three-dimensional echocardiographic assessment of annular shape changes in the normal and regurgitant mitral valve. Am Heart J. 2000;139:378–387.

    Article  CAS  PubMed  Google Scholar 

  3. Gutiérrez-Chico JL, Zamorano Gómez JL, Rodrigo-López JL, Mataix L, Pérez de Isla L, Almería-Valera C, Aubele A, Macaya-Miguel C. Accuracy of real-time 3-dimensional echocardiography in the assessment of mitral prolapse. Is transesophageal echocardiography still mandatory? Am Heart J. 2008;155:694–698.

    Article  PubMed  Google Scholar 

  4. Pepi M, Tamborini G, Maltagliati A, Galli CA, Sisillo E, Salvi L, et al. Head-to-head comparison of two- and three-dimensional transthoracic and transesophageal echocardiography in the localization of mitral valve prolapse. J Am Coll Cardiol. 2006;48:2524–2530.

    Article  PubMed  Google Scholar 

  5. Delabays A, Jeanrenaud X, Chassot PG, Von Segesser LK, Kappenberger L. Localization and quantification of mitral valve prolapse using three-dimensional echocardiography. Eur J Echocardiogr. 2004;5:422–429.

    Article  CAS  PubMed  Google Scholar 

  6. Watanabe N, Ogasawara Y, Yamaura Y, Kawamoto T, Toyota E, Akasaka T, et al. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J Am Coll Cardiol. 2005;45:763–769.

    Article  PubMed  Google Scholar 

  7. Watanabe N, Ogasawara Y, Yamaura Y, Wada N, Kawamoto T, Toyota E, et al. Mitral annulus flattens in ischemic mitral regurgitation: geometric differences between inferior and anterior myocardial infarction: a real-time 3-dimensional echocardiographic study. Circulation. 2005;112:458–462.

    Article  Google Scholar 

  8. Kwan J, Shiota T, Agler DA, Popovic ZB, Qin JX, Gillinov MA, et al. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation. Real-time three-dimensional echocardiography study. Circulation. 2002;107:1135–1140.

    Article  Google Scholar 

  9. Liel-Cohen N, Guerrero JL, Otsuji Y, Handschumacher MD, Rudski LG, Hunziker PR, et al. Design of a new surgical approach for ventricular remodeling to relieve ischemic mitral regurgitation. Insights from 3-dimensional echocardiography. Circulation. 2000;101:2756–2763.

    CAS  PubMed  Google Scholar 

  10. Li X, Shiota T, Delabays A, Teien D, Zhou XD, Sinclair B, et al. Flow convergence flow rates 3-dimensional reconstruction of color Doppler flow maps for computing transvalvular regurgitant flows without geometric assumptions: an in vitro quantitative flow study. J Am Soc Echocardiogr. 1999;12:1035–1044.

    Article  CAS  PubMed  Google Scholar 

  11. Sitges M, Jones M, Shiota T, Qin JX, Tsujino H, Bauer F, et al. Real-time three-dimensional color Doppler evaluation of the flow convergence zone for quantification of mitral regurgitation: validation experimental study and initial clinical experience. J Am Soc Echocardiogr. 2002;16:38–45.

    Google Scholar 

  12. Breburda ChS, Griffin BP, Pu M, Rodriguez L, Cosgrove DM, Thomas JD. Three-dimensional echocardiographic planimetry of maximal regurgitant orifice area in myxomatous mitral regurgitation: intraoperative comparison with proximal flow convergence. J Am Coll Cardiol. 1998;32:432–437.

    Article  CAS  PubMed  Google Scholar 

  13. Lange A, Palka P, Donnelly E, Burstow DJ. Quantification of mitral regurgitation orifice area by 3-dimensional echocardiography: comparison with effective regurgitant orifice area by PISA method and proximal regurgitant jet diameter. Int J Cardiol. 2002;86:87–98.

    Article  PubMed  Google Scholar 

  14. Iwakura K, Ito H, Kawano S, Okamura A, Kurotobi T, Date M, Inoue K, Fujii K. Comparison of orifice area by transthoracic three-dimensional Doppler echocardiography versus proximal isovelocity surface area (PISA) method for assessment of mitral regurgitation. Am J Cardiol. 2006;97:1630–1637.

    Article  PubMed  Google Scholar 

  15. Hoole SP, Liew TV, Boyd J, Wells FC, Rusk RA. Transthoracic real-time three-dimensional echocardiography offers additional value in the assessment of mitral valve morphology and area following mitral valve repair. Eur J Echocardiogr. 2008;9:625–630.

    Article  PubMed  Google Scholar 

  16. Armen TA, Vandse R, Crestanello JA, Raman SV, Bickle KM, Nathan NS. Mechanisms of valve competency after mitral valve annuloplasty for ischaemic mitral regurgitation using the Geoform ring: insights from three-dimensional echocardiography. Eur J Echocardiogr. 2008 May 13 [Epub ahead of print].

    Google Scholar 

  17. Wilkins GT, Weyman AE, Abascal VM, Block PC, Palacios IF. Percutaneous balloon dilatation of the mitral valve: an analysis of echocardiographic variables related to outcome and the mechanism of dilatation. Br Heart J. 1988;60:299–308.

    Article  CAS  PubMed  Google Scholar 

  18. Zamorano J, Cordeiro P, Sugeng L, Perez de Isla L, Weinert L, Macaya C, Rodríguez E, Lang RM. Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation. J Am Coll Cardiol. 2004;43:2091–2096.

    Article  PubMed  Google Scholar 

  19. Hatle L, Angelsen B, Tromsdal A. Noninvasive assessment of atrioventricular pressure half-time by Doppler ultrasound. Circulation. 1979;60:1096–1104.

    CAS  PubMed  Google Scholar 

  20. Rodriguez L, Thomas JD, Monterroso V, et al. Validation of the proximal flow convergence method: calculation of orifice area in patients with mitral stenosis. Circulation. 1993;88:1157–1165.

    CAS  PubMed  Google Scholar 

  21. Binder TM, Rosenhek R, Porenta G, Maurer G, Baumgartner H. Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. J Am Coll Cardiol. 2000;36:1355–1361.

    Article  CAS  PubMed  Google Scholar 

  22. Xie MX, Wang XF, Cheng TO, Wang J, Lu Q. Comparison of accuracy of mitral valve area in mitral stenosis by real-time, three-dimensional echocardiography versus two-dimensional echocardiography versus Doppler pressure half-time. Am J Cardiol. 2005;95:1496–1499.

    Article  PubMed  Google Scholar 

  23. Sebag IA, Morgan JG, Handschumacher MD, Marshall JE, Nesta F, Hung J, Picard MH, Levine RA. Usefulness of three-dimensionally guided assessment of mitral stenosis using matrix-array ultrasound. Am J Cardiol. 2005;96:1151–1156.

    Article  PubMed  Google Scholar 

  24. Kasliwal R, Trehan N, Mittal S. A new “gold standard” for the measurement of mitral valve area? Surgical validation of volume rendered three-dimensional echocardiography. Circulation. 1996;94(Suppl.):355.

    Google Scholar 

  25. Perez de Isla L, Casanova C, Almeria C, Rodrigo JL, Cordeiro P, Mataix L, Aubele AL, Lang R, Zamorano J. Which method should be the reference method to evaluate the severity of rheumatic mitral stenosis? Gorlin’s method versus 3D-echo. Eur J Echocardiogr. 2007;8:470–473.

    Article  PubMed  Google Scholar 

  26. Reid CL, Rahimtoola SH: The role of echocardiography/Doppler in catheter balloon treatment of adults with aortic and mitral stenosis. Circulation. 1991;84(Suppl. ):240–249.

    Google Scholar 

  27. Vahanian A, Michel PL, Cormier B, et al. Results of percutaneous mitral commissurotomy in 200 patients. Am J Cardiol. 1989;63:847–852.

    Article  CAS  PubMed  Google Scholar 

  28. Thomas JD, Wilkins GT, Choong CY, et al. Inaccuracy of mitral pressure-halftime immediately after percutaneous mitral valvotomy: dependence on mitral gradient and left atrial and ventricular compliance. Circulation. 1988;78:980–993.

    CAS  PubMed  Google Scholar 

  29. Faletra F, Pezzano A Jr, Fusco R, et al. Measurement of mitral valve area in mitral stenosis: four echocardiographic methods compared with direct measurement of anatomic orifices. J Am Coll Cardiol. 1996;28:1190–1197.

    Article  CAS  PubMed  Google Scholar 

  30. Zamorano J, Pérez de Isla L, Sugeng L, Cordeiro P, Rodrigo JL, Almería C, Weinert L, Feldman T, Macaya C, Lang RM, Hernandez Antolín R. Non invasive assessment of mitral valve area during percutaneous balloon mitral valvuloplasty: role of real time 3D echocardiography. Eur Heart J. 2004;25:2086–2091.

    Article  PubMed  Google Scholar 

  31. Mannaerts H, Li Y, Kamp O, Valocik G, Hrudova J, Ripa S, Visser CA. Quantitative assessment of mechanical prosthetic valve area by 3-dimensional transesophageal echocardiography. J Am Soc Echocardiogr. 2001;14:723–731.

    Article  CAS  PubMed  Google Scholar 

  32. Pérez De Isla L, Zamorano J, Malangatana G, Almería C, Rodrigo JL, Cordeiro P, et al. Usefulness of real-time 3-dimensional echocardiography in the assessment of infective endocarditis: initial experience. J Ultrasound Med. 2005;4:231–233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Zamorano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Zamorano, J.L., de Agustín, J.A. (2010). Three-Dimensional Echocardiographic Evaluation of the Mitral Valve. In: Badano, L., Lang, R., Zamorano, J. (eds) Textbook of Real-Time Three Dimensional Echocardiography. Springer, London. https://doi.org/10.1007/978-1-84996-495-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-495-1_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-494-4

  • Online ISBN: 978-1-84996-495-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics