Skip to main content

Technical Principles of Transthoracic Three-Dimensional Echocardiography

  • Chapter
  • First Online:
Book cover Textbook of Real-Time Three Dimensional Echocardiography

Abstract

The last years we have experienced a rapid development in three-dimensional echocardiography (3DE). Along this journey of development, technology battles have been won at many frontiers. Modern 3D scanners are now armed with cutting-edge technology. Breakthroughs in transducer design, beamforming, display technologies, and quantification have been released almost on a yearly basis. These developments have been enabled by the passion of numerous engineers for solving challenging technical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savord B, Solomon R. Fully sampled matrix transducer for real time 3D ultrasonic imaging. Ultrasonics, 2003 IEEE Symposium on, 2003;Vol 1:945–953.

    Google Scholar 

  2. Salgo IS. Three-dimensional echocardiographic technology. Cardiol Clin. 2007;25(2):231–239.

    Article  PubMed  Google Scholar 

  3. Brekke S, Rabben SI, Støylen A, Haugen A, Haugen GU, Steen EN, Torp H. Volume stitching in three-dimensional echocardiography: distortion analysis and extension to real time. Ultrasound Med Biol. 2007;33(5):782–796.

    Article  PubMed  Google Scholar 

  4. Steen E, Olstad B. Volume rendering of 3D medical ultrasound data using direct feature mapping. IEEE Trans Med Imaging. 1994;13(3):517–525.

    Article  CAS  PubMed  Google Scholar 

  5. Yang HS, Pellikka PA, McCully RB, Oh JK, Kukuzke JA, Khandheria BK, Chandrasekaran K. Role of biplane and biplane echocardiographically guided 3-dimensional echocardiography during dobutamine stress echocardiography. J Am Soc Echocardiogr. 2006;19(9):1136–1143.

    PubMed  Google Scholar 

  6. Nucifora G, Badano LP, Dall’Armellina E, Gianfagna P, Allocca G, Fioretti PM. Fast data acquisition and analysis with real time triplane echocardiography for the assessment of left ventricular size and function: a validation study. Echocardiography. 2009;26(1):66–75.

    Article  PubMed  Google Scholar 

  7. Monaghan, M. Multi-plane and four-dimensional stress echocardiography—new solutions to old problems? European Cardiovascular Disease. 2006.

    Google Scholar 

  8. Berg S, Torp H, Haugen BO, Samstad S. Volumetric blood flow measurement with the use of dynamic 3-dimensional ultrasound color flow imaging. J Am Soc Echocardiogr. 2000;13(5):393–402.

    CAS  PubMed  Google Scholar 

  9. Pemberton J, Ge S, Thiele K, Jerosch-Herold M, Sahn DJ. Real-time three-dimensional color Doppler echocardiography overcomes the inaccuracies of spectral Doppler for stroke volume calculation. J Am Soc Echocardiogr. 2006;19(11):1403–1410.

    PubMed  Google Scholar 

  10. Malm S, Frigstad S, Sagberg E, Steen PA, Skjarpe T. Real-time simultaneous triplane contrast echocardiography gives rapid, accurate, and reproducible assessment of left ventricular volumes and ejection fraction: a comparison with magnetic resonance imaging. J Am Soc Echocardiogr. 2006;19(12):1494–1501.

    PubMed  Google Scholar 

  11. Zamorano J, Cordeiro P, Sugeng L, Perez de Isla L, Weinert L, Macaya C, Rodríguez E, Lang RM. Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J Am Coll Cardiol 2004;43: 2091–2096.

    Article  PubMed  Google Scholar 

  12. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B, Marwick TH. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. Eur Heart J. 2009;30(1):98–106.

    PubMed  Google Scholar 

  13. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D, Gerard O, Allain P, Zamorano JL, de Isla LP, Mor-Avi V, Lang RM. Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. Eur Heart J. 2006; 27(4):460–468.

    PubMed  Google Scholar 

  14. Muraru D, Badano LP, Piccoli G, Gianfagna P, Del Mestre L, Ermacora D, Proclemer A. Validation of a novel automated border detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. Eur J Echocardiogr. 2010;11:359–68.

    Google Scholar 

  15. Hansegard J, Urheim S, Lunde K, Malm S, Rabben SI. Semi-automated quantification of left ventricular volumes and ejection fraction by real-time three-dimensional echocardiography. Cardiovasc Ultrasound. 2009;7:18.

    Article  Google Scholar 

  16. Mor-Avi V, Jenkins C, Kühl HP, Nesser HJ, Marwick T, Franke A, Ebner C, Freed BH, Steringer-Mascherbauer R, Pollard H, Weinert L, Niel J, Sugeng L, Lang RM. Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging. 2008; 1(4): 413–423.

    Article  PubMed  Google Scholar 

  17. Pouleur AC, le Polain de Waroux JB, Pasquet A, Gerber BL, Gérard O, Allain P, Vanoverschelde JL. Assessment of left ventricular mass and volumes by three-dimensional echocardiography in patients with or without wall motion abnormalities: comparison against cine magnetic resonance imaging. Heart. 2008; 94(8):1050–1057.

    Article  PubMed  Google Scholar 

  18. Kapetanakis S, Kearney MT, Siva A, Gall N, Cooklin M, Monaghan MJ. Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation. 2005;112(7):992–1000.

    Article  CAS  PubMed  Google Scholar 

  19. de Isla LP, Balcones DV, Ferna’ndez-Golfı’n C, Marcos-Alberca P, Almerı’a C, Rodrigo JL, Macaya C, Zamorano J. Three-dimensional-wall motion tracking: a new and faster tool for myocardial strain assessment: comparison with two-dimensional-wall motion tracking. J Am Soc Echocardiogr. 2009;22:325–330.

    Article  Google Scholar 

  20. Suh IW, Song JM, Lee EY, Kang SH, Kim MJ, Kim JJ, Kang DH, Song JK. Left atrial volume measured by real-time 3-dimensional echocardiography predicts clinical outcomes in patients with severe left ventricular dysfunction and in sinus rhythm. J Am Soc Echocardiogr. 2008 May;21(5):439–445.

    PubMed  Google Scholar 

  21. Niemann PS, Pinho L, Balbach T, Galuschky C, Blankenhagen M, Silberbach M, Broberg C, Jerosch-Herold M, Sahn DJ. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol. 2007;50(17):1668–1676.

    Article  PubMed  Google Scholar 

  22. Orderud F, Torp H, Rabben SI. Automatic alignment of standard views in 3D echocardiograms using real-time tracking. SPIE Medical Imaging 2009: Ultrasonic Imaging and Signal Processing, Proc. of SPIE. Vol. 7265, 72650D-1-7.

    Google Scholar 

  23. Takeuchi M, Otani S, Weinert L, Spencer KT, Lang RM. Comparison of contrast-enhanced real-time live 3-dimensional dobutamine stress echocardiography with contrast 2-dimensional echocardiography for detecting stress-induced wall-motion abnormalities. J Am Soc Echocardiogr. 2006;294–299.

    Google Scholar 

  24. Toledo E, Lang RM, Collins KA, Lammertin G, Williams U, Weinert L, Bolotin G, Coon PD, Raman J, Jacobs LD, Mor-Avi V. Imaging and quantification of myocardial perfusion using real-time three-dimensional echocardiography. J Am Coll Cardiol. 2006; 47(1):146–154.

    Article  PubMed  Google Scholar 

  25. Orderud F, Hansegård J, Rabben SI. Real-time volume measurements real-time tracking of the left ventricle in 3D echocardiography using a state estimation approach. MICCAI 2007, Part I, LNCS 4791, pp. 858–865.

    Google Scholar 

  26. Mannaerts HF, van der Heide JA, Kamp O, Stoel MG, Twisk J, Visser CA. Early identification of left ventricular remodelling after myocardial infarction, assessed by transthoracic 3D echocardiography. Eur Heart J. 2004;25(8):680–687.

    Article  PubMed  Google Scholar 

  27. Walimbe V., Jaber WA, Garcia MA, Shekhar R. Multimodality cardiac stress testing: combining real-time 3-dimensional echocardiography and myocardial perfusion SPECT. J Nucl Med. 2009 February;50(2):226–230.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the reviews by colleagues Kjell Kristoffersen, Olivier Gerard, Geir Haugen, Gunnar Hansen, Jøger Hansegård, Andreas Ziegler, Fredrik Orderud, Lars Linmarker, Luzvilla Anacta and Lea Anne Dantin. Special thanks to Jøger Hansegård and Jan Yee for help with making the figures and to Svein Brekke who let me adapt three of his figures (beamforming, sub-volume stitching and geometrical distortion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stein Inge Rabben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Rabben, S.I. (2010). Technical Principles of Transthoracic Three-Dimensional Echocardiography. In: Badano, L., Lang, R., Zamorano, J. (eds) Textbook of Real-Time Three Dimensional Echocardiography. Springer, London. https://doi.org/10.1007/978-1-84996-495-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-495-1_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-494-4

  • Online ISBN: 978-1-84996-495-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics