Skip to main content

Reduced Energy Consumption by Adapted Process Chains

  • Conference paper
Proceedings of the 36th International MATADOR Conference
  • 2313 Accesses

Abstract

All thermal and thermochemical methods for the manufacturing of surface hardened components demand the application of high temperatures which are accompanied by significant emission of CO2. At the ECO-Center of the Foundation Institute of Materials Science in Bremen, alternative manufacturing processes have been developed, which avoid a final heat treatment and allow surface hardening with a significantly reduced energy consumption. Two of these approaches are grind hardening and cold surface hardening. The grind hardening effect uses the heat produced by the machining process. The high temperatures combined with self-quenching of the workpiece generate a short-term austenitization and subsequent martensitic transformation. Cold surface hardening represents a way to profit from special properties of the machined materials. Workpieces with a high amount of metastable austenite can be machined in their soft state and a subsequent induction of high stresses by a mechanical process such as deep rolling results in a martensitic transformation of the surface. Both process chains are applicable for the manufatcuring of surface hardened components with high surface quality and compressive residual stresses at the surface. In the future, the alternative process chains presented combined with reliable tools for the prediction of CO2-emission resulting from machining processes will allow a significant reduction of CO2 per produced component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Field, M.; Kahles, J.F.: Review of Surface Integrity of Machined Components. Annals of the CIRP, 20/2, 1971, pp. 153-163.

    Google Scholar 

  2. Hisakado, T.: The influence of surface roughness on abrasive wear. Wear, 41/1, 1977, pp. 179-190.

    Article  Google Scholar 

  3. Kalin, M.; Jahanmir, S.; Iwes, L.K.: Effect of counterface roughness on abrasive wear of hydroxyapatite. Wear, 252/9-10, 2002, pp. 679-685.

    Article  Google Scholar 

  4. Hiroyuki, S.: The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel. International Journal of Machine Tools and Manufacture, 45/2, 2005, pp. 131-136.

    Article  Google Scholar 

  5. Brockhoff, T.; Brinksmeier, E.: Grind-Hardening: A Comprehensive View. Annals of the CIRP, 48/1, 1999, pp. 255-260.

    Article  Google Scholar 

  6. Kristoffersen, H.; Vomacka, P.: Influence of process parameters for induction hardening on residual stresses. Materials & Design, 22/8, 2001, pp. 637-644.

    Article  Google Scholar 

  7. Pantleon, K.; Keßler, O.; Hoffmann, F.; Mayr, P.: Induction surface hardening of hard coated steels. Surface and Coatings Technology, 120-121, 1999, pp. 495-501.

    Article  Google Scholar 

  8. Jung, M.; Walter, A.; Hoffmann, F.; Mayr, P.: High Pressure Nitriding of Austenitic Stainless Steels. Proc. 11th Congress of the IFHT / 4th ASM Heat Treatment and Surface Engineering Conf. in Europe, 19.-21.10.98, Florence, Italy, Vol. 1 (Ed.: D. Fiarro, E.J. Mittemeijer), Associazione Italiana di Metallurgia, Milan, 1998, pp. 281-289.

    Google Scholar 

  9. Clausen, B.; Surm, H.; Hoffmann, F. Zoch, H.-W. The influence of carburizing on size and shape changes. Mat.-wiss. u. Werkstofftech., 40, 2009, 5-6, pp. 415-419.

    Google Scholar 

  10. Brinksmeier, E.; Brockhoff, T.: Randschicht-Warmebehandlung durch Schleifen. Journal of Heat Treatment and Materials (HTM), 49/5, 1994, pp. 327-330.

    Google Scholar 

  11. Zhang, J.; Ge, P.; Jen, T.-C.; Zhang, L.: Experimental and numerical studies of AISI1020 steel in grindhardening. International Journal of Heat and Mass Transfer, 52/ 3-4, 2009, pp. 787-795.

    Article  MATH  Google Scholar 

  12. Heinzel, C.: Schleifprozesse verstehen - Zum Stand der Modellbildung und Simulation sowie unterstützender experimenteller Methoden. Habilitation, University of Bremen, 2009.

    Google Scholar 

  13. Brinksmeier, E.; Minke, E.; Wilke, T.: Investigations on Surface Layer Impact and Grinding Wheel Performance for Industrial Grind-Hardening Applications. Annals of the German Academic Society for Production Engineering (WGP), 1, 2005, pp. 35-40.

    Google Scholar 

  14. Zäh, M. F.; Föckerer, T.; Brinksmeier, E.; Heinzel, C.; Huntemann, J.-W.: Experimentelle und numerische Bestimmung der Einhärtetiefe beim Schleifhärten. wtonline, 1/2, 2009, pp. 49-55.

    Google Scholar 

  15. Zäh, M. F.; Brinksmeier, E.; Heinzel, C.; Huntemann, J.-W.; Föckerer, T.: Experimental and numerical identification of process parameters of grind-hardening and resulting part distortions. Annals of the German Academic Society for Production Engineering (WGP), 3, 2009, pp. 271-279.

    Google Scholar 

  16. Brinksmeier, E., Garbrecht, M., Meyer, D.: Cold surface hardening. Annals of the CIRP, 57/1, 2008, pp. 541-544.

    Article  Google Scholar 

  17. Garbrecht, M.: Mechanisches Randschichthärten in der Fertigung, Dr.-Ing. Dissertation, University of Bremen, 2006.

    Google Scholar 

  18. Röttger, K.: Walzen hartgedrehter Oberflächen. Dissertation Dr.-Ing. RWTH Aachen, Shaker Verlag, Aachen, 2003.

    Google Scholar 

  19. Brinksmeier, E., Garbrecht, M., Meyer, D., Dong, J.: Surface Hardening by Strain Induced Martensitic Transformation. Annals of the German Academic Society for Production Engineering (WGP), 2, 2008, pp. 109-116.

    Google Scholar 

  20. Meyer, D., Dong, J., Garbrecht, M., Hoffmann, F., Brinksmeier, E., Zoch, H.-W.: Mechanisch induziertes Härten. Journal of Heat Treatment and Materials (HTM), 65/1, 2010, pp. 37-45.

    Google Scholar 

  21. Müller, E.; Engelmann, J.; Strauch, J.: Energieeffizienz als Zielgröße in der Fabrikplanung. wt Werkstattstechnik online, 2008, Heft 7/8.

    Google Scholar 

  22. Neugebauer, R.: Energieeffizienz in der Produktion, Untersuchung zum Handlungs- und Forschungsbedarf, Fraunhofer Gesellschaft, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Limited

About this paper

Cite this paper

Brinksmeier, E., Meyer, D., Garbrecht, M., Huntemann, JW., Larek, R. (2010). Reduced Energy Consumption by Adapted Process Chains. In: Hinduja, S., Li, L. (eds) Proceedings of the 36th International MATADOR Conference. Springer, London. https://doi.org/10.1007/978-1-84996-432-6_90

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-432-6_90

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-431-9

  • Online ISBN: 978-1-84996-432-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics