Skip to main content

Charged Particle Motion: Lagrange–Hamilton Orbit Dynamics

  • Chapter
Book cover Frontiers in Fusion Research
  • 1249 Accesses

Abstract

The motion of light and objects in nature follows an orbit in which the path integral of the “action” becomes extremal. Fermat’s well-known optics principle tells us that light draws an orbit such that the time required becomes minimum between fixed point A and B. For example, Snell’s law describing refraction of light in media with different refractive indexes can be derived from Fermat’s principle (Figure 4.1). Nature is governed beautifully by the variational principle.

The variational principle for the object motion is expressed by Hamilton’s principle. The complex charged particle motion, a combination of Larmor and drift motions in the confinement magnetic field, can be simplified using the above variational principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein H (1950) Classical Mechanics. Addison-Wesley.

    Google Scholar 

  2. Courant R, Hilbert D (1989) Methods of Mathematical Physics Vol. 1 Wiley-Interscience.

    Google Scholar 

  3. Landau LD, Lifshitz EM (1994) Classical Theory of Fields 4th edn. Pergamon Press.

    Google Scholar 

  4. Alfven H. (1940) Ark. Mat., Astron. Fys. 27A, 22.

    MathSciNet  Google Scholar 

  5. Littlejohn RG (1983) J. Plasma Phys 29, 111–125.

    Article  Google Scholar 

  6. Morozov AI, Solovev LS (1966) Rev. Plasma Phys., 2, 201.

    Google Scholar 

  7. Boozer A (2004) Rev. Mod. Phys., 76, 1071–1141.

    Article  Google Scholar 

  8. Taylor JB (1964) Phys. Fluids, 7, 767–773.

    Article  Google Scholar 

  9. Fowler RH, et al. (1985) Phys. Fluids 28, 338.

    Article  MATH  Google Scholar 

  10. Boozer A and Kuo-Petravic G (1981) Phys. Fluids, 24, 851–859.

    Article  MATH  Google Scholar 

  11. Kulsrud RM (2005) Plasma Physics for Astrophysics. Princeton University Press.

    Google Scholar 

  12. Littlejohn RH (1982) J. Math. Phys., 23, 742–747.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cary JR, Littlejohn RG (1983) Ann. Phys., 151, 1–34.

    Article  MathSciNet  Google Scholar 

  14. Hasegawa A (2005) Physica Scr. T116, 72–74.

    Article  Google Scholar 

  15. Yoshida, Z, et al. (2010) Phys. Rev. Lett., 104, 235004.

    Article  Google Scholar 

  16. Flanders H (1989) Differential Forms with Applications to the Physical Sciences. Dover Books.

    Google Scholar 

  17. Brizard AJ, Hahm TS (2007) Rev. Mod. Phys., 79, 421–468.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hahm TS (1988) Phys. Fluids, 31, 2670–2673.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Kikuchi, M. (2011). Charged Particle Motion: Lagrange–Hamilton Orbit Dynamics. In: Frontiers in Fusion Research. Springer, London. https://doi.org/10.1007/978-1-84996-411-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-411-1_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-410-4

  • Online ISBN: 978-1-84996-411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics