Skip to main content

Understanding the Material Removal Mechanisms

  • Chapter
  • First Online:
  • 1406 Accesses

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

This chapter explains various material removal pathways in relation to diamond polishing. The discussion here highlights the fact that the mechanisms for the removal of carbon atoms from a diamond substrate, which include the conversion of diamond to non-diamond carbon, chemical/mechanical removal, micro-cleavage, diffusion of carbon into soluble metals, chemical reactions, and removal of surface carbon atoms through evaporation, ablation or sputtering, are complicated. Individual diamond polishing processes can involve various mechanisms. Temperature rise plays an important role in the activation of almost all the mechanisms, as thermo-chemical reactions occur only at high temperatures. The fundamental understanding described in this chapter is of primary importance to an appropriate selection, design, and development of a sensible diamond polishing process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alam, M., & Sun, Q. (1993). Kinetics of chemical vapor deposited diamond-oxygen reaction. Journal of Materials Research, 8, 2870–2877.

    Article  Google Scholar 

  • Asmussen, J., & Reinhard, D. K. (Eds.). (2002). Diamond Films Handbook. New York: Marcel Dekker.

    Google Scholar 

  • Bhushan, B., & Gupta, B. K. (1991). Handbook of Tribology. New York: McGraw-Hill.

    Google Scholar 

  • Bundy, F. P., Bassett, W. A., Weathers, M. S., Hemley, R. J., Mao, H. U., & Goncharov, A. F. (1996). The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon, 34, 141–153.

    Article  Google Scholar 

  • Butenko, Y. V., Kuznetsov, V. L., Chuvilin, A. L., Kolomiichuk, V. N., Stankus, S. V., Khairulin, R. A., et al. (2000). Kinetics of the graphitization of dispersed diamonds at “low” temperatures. Journal of Applied Physics, 88, 4380–4388.

    Article  Google Scholar 

  • Hall, H. T. (1961). The Synthesis of diamond. Journal of Chemical Education, 38, 484–489.

    Article  Google Scholar 

  • Howes, V. R. (1962). The Graphitization of Diamond. Proceedings of the Physical Society, 80, 648–662.

    Article  Google Scholar 

  • Ikawa, N. T. T. (1971). Thermal aspects of wear of diamond grain in grinding. Ann CIRP, 19, 153–157.

    Google Scholar 

  • Inui, T., Otowa, T., Tsutchihashi, K., & Takegami, Y. (1982). Complete oxidation of active carbon at low temperatures by composite catalysts. Carbon, 20, 213–217.

    Article  Google Scholar 

  • Johnson, C. E., Hasting, M. A., & Weimer, W. A. S. (1990a). Thermogravimetric analysis of the oxidation of CVD diamond films. Journal of Materials Research, 5, 2320–2325.

    Article  Google Scholar 

  • Johnson, C. E., Weimer, W. A., & Hasting, M. A. S. (1990b). Mass spectroscopy of deposition exhaust gases and oxidation of diamond films. Carbon, 28, 791.

    Article  Google Scholar 

  • Johnston, C., Crossley, A., Chalker, P. R., Buckley-Golder, I. M., & Kobashi, K. (1992). High temperature Raman studies of diamond thin films. Diamond and Related Materials, 1, 450–456.

    Article  Google Scholar 

  • Joshi, A., Nimmagadda, R. & Herrington, J. (1990). Oxidation kinetics of diamond, graphite, and chemical vapor deposited diamond films by the thermal gravimetry. Journal of Vacuum Science and Technology A, 8, 2137–2142.

    Google Scholar 

  • Luo, X., Robin, J.-C., & Yu, S. (2004). Effect of temperature on graphite oxidation behavior. Nuclear Engineering and Design, 227, 273–280.

    Article  Google Scholar 

  • Malshe, A. P., Park, B. S., Brown, W. D., & Naseem, H. A. (1999). A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates. Diamond and Related Materials, 8, 1198–1213.

    Article  Google Scholar 

  • Mul, G., Kapteijn, F., Doornkamp, C., & Moulijn, J. A. (1998). Transition Metal Oxide Catalyzed Carbon Black Oxidation: A Study with18O2. Journal of Catalysis, 179, 258–266.

    Article  Google Scholar 

  • Neeft, J. P. A., Van Pruissen, O. P., Makkee, M., & Moulijn, J. A. (1997). Catalysts for the oxidation of soot from diesel exhaust gases II. Contact between soot and catalyst under practical conditions*1. Applied Catalysis, B: Environmental, 12, 21–31.

    Article  Google Scholar 

  • Nimmagadda, R. R., Joshi, A., & Hsu, W. L. (1990). Role of microstructure on the oxidation behavior of microwave plasma synthesized diamond and diamond-like carbon films. Journal of Materials Research, 5, 2445–2450.

    Article  Google Scholar 

  • Ollison, C. D., Brown, W. D., Malshe, A. P., Naseem, H. A., & Ang, S. S. (1999). A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond. Diamond and Related Materials, 8, 1083–1090.

    Article  Google Scholar 

  • Pierson, H. O. (1993). Handbook of Carbon, graphite, diamond and fullerences: properties, processing and applications, New Jersey. U.S.A.: Noyes Publications.

    Google Scholar 

  • Sun, Q., & Alam, M. (1992). Relative oxidation behavior of chemical vapor deposited and type IIa natural diamonds. Journal of the Electrochemical Society, 139, 933–936.

    Article  Google Scholar 

  • Sung, C.-M., & Tai, M.-F. (1997). Reactivities of transition metals with carbon: Implications to the mechanism of diamond synthesis under high pressure. International Journal of Refractory Metals & Hard Materials, 15, 237–256.

    Article  Google Scholar 

  • Tankala, K., Debroy, T., & Alam, M. (1990). Oxidation of diamond films synthesized by hot filament assisted chemical vapor deposition. Journal of Materials Research, 5, 2483–2489.

    Article  Google Scholar 

  • Tolkowsky, M. (1920). Research on the abrading, grinding or polishing of diamond. D. Sc: Thesis, University of London.

    Google Scholar 

  • Vishnevskii, A. S., Lysenko, A. V., Ositinskaya, T. D. & Delevi, V. G. (1975). Role of diffusion of graphitization in the phase interaction between synthetic diamond and iron. Inorganic Materials, 11.

    Google Scholar 

  • Yuan, Z. J., Yao, Y. X., Zhou, M., & Bai, Q. S. (2003). Lapping of single crystal diamond tools. CIRP Annals - Manufacturing Technology, 52, 285–288.

    Article  Google Scholar 

  • Zaitsev, A. M., Kosaca, G., Richarz, B., Raiko, V., Job, R., Fries, T., et al. (1998). Thermochemical polishing of CVD diamond films. Diamond and Related Materials, 7, 1108–1117.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangchi Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Chen, Y., Zhang, L. (2013). Understanding the Material Removal Mechanisms. In: Polishing of Diamond Materials. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-84996-408-1_2

Download citation

Publish with us

Policies and ethics