NESSIE: Network Example Source Supporting Innovative Experimentation

Abstract

We describe a new web-based facility that makes available some realistic examples of complex networks. NESSIE (Network Example Source Supporting Innovative Experimentation) currently contains 12 specific networks from a diverse range of application areas, with a Scottish emphasis. This collection of data sets is designed to be useful for researchers in network science who wish to evaluate new algorithms, concepts and models. The data sets are available to download in two formats (MATLAB’s .mat format and .txt files readable by packages such as Pajek), and some basic MATLAB tools for computing summary statistics are also provided.

References

  1. 1.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boisvert, R., Pozo, R., Remington, K., Barrett, R., Dongarra, J.: Matrix market: a web resource for test matrix collections. In: Boisvert, R. (ed.) The Quality of Numerical Software: Assessment and Enhancement, pp. 125–137. Chapman and Hall, London (1997) Google Scholar
  3. 3.
    Brunet, J.P., Tamayo, P., Golub, T.R., Mesirov, J.P.: Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA 101, 4164–4169 (2004) CrossRefGoogle Scholar
  4. 4.
    Croft, D.P., Krause, J., James, R.: Social networks in the guppy (Poecilia reticulata). Proc. R. Soc. Lond. B, Biol. Sci. 271, 516–519 (2004) CrossRefGoogle Scholar
  5. 5.
    Davis, T.: The University of Florida sparse matrix collection. Technical Report, University of Florida, USA (2007) Google Scholar
  6. 6.
    Erdös, P., Rényi, A.: On random graphs. Publ. Math. (Debr.) 6, 290–297 (1959) MATHGoogle Scholar
  7. 7.
    Estrada, E.: Topological structural classes of complex networks. Phys. Rev. E 75, 016103 (2007) CrossRefGoogle Scholar
  8. 8.
    Fingleton, B., Fischer, M.: Neoclassical theory versus new economic geography: competing explanations of cross-regional variation in economic development. Ann. Reg. Sci. 44, 467–491 (2010) CrossRefGoogle Scholar
  9. 9.
    Gilbert, E.N.: Random graphs. Ann. Math. Stat. 30, 1141–1144 (1959) MATHCrossRefGoogle Scholar
  10. 10.
    Gilbert, J.R., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: design and implementation. SIAM J. Matrix Anal. Appl. 13, 333–356 (1992) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Grindrod, P.: Range-dependent random graphs and their application to modeling large small-world proteome datasets. Phys. Rev. E 66, 066702 (2002) CrossRefGoogle Scholar
  12. 12.
    Higham, D.J., Kalna, G., Kibble, M.: Spectral clustering and its use in bioinformatics. J. Computational and Applied Math. 204, 25–37 (2007) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Higham, D.J., Pržulj, N., Rašajski, M.: Fitting a geometric graph to a protein–protein interaction network. Bioinformatics 24, 1093–1099 (2008) CrossRefGoogle Scholar
  14. 14.
    Higham, D.J.: Unravelling small world networks. J. Comput. Appl. Math. 158, 61–74 (2003) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Higham, D.J.: Spectral reordering of a range-dependent weighted random graph. IMA J. Numer. Anal. 25, 443–457 (2005) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Higham, D.J., Higham, N.J.: MATLAB Guide. SIAM, Philadelphia (2000), 283 pp. MATHGoogle Scholar
  17. 17.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interaction interactome. Proc. Natl. Acad. Sci. USA 98(8), 4569–4574 (2001) CrossRefGoogle Scholar
  18. 18.
    Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000) CrossRefGoogle Scholar
  19. 19.
    Link, J.: Does food web theory work for marine ecosystems? Mar. Ecol. Prog. Ser. 230, 1–9 (2002) CrossRefGoogle Scholar
  20. 20.
    Milenkovic, T., Lai, J., Przulj, N.: GraphCrunch: A tool for large network analyses. BMC Bioinform. 9, 70 (2008) CrossRefGoogle Scholar
  21. 21.
    Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: A lock-and-key model for protein–protein interactions. Bioinformatics 2, 2012–2019 (2006) CrossRefGoogle Scholar
  22. 22.
    Newman, M.E.J., Moore, C., Watts, D.J.: Mean-field solution of the small-world network model. Phys. Rev. Lett. 84, 3201–3204 (2000) CrossRefGoogle Scholar
  23. 23.
    Penrose, M.: Geometric Random Graphs. Oxford University Press, Oxford (2003) MATHCrossRefGoogle Scholar
  24. 24.
    Pržulj, N., Higham, D.J.: Modelling protein–protein interaction networks via a stickiness index. J. R. Soc. Interface 3, 711–716 (2006) CrossRefGoogle Scholar
  25. 25.
    Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: Scale-free or geometric? Bioinformatics 20(18), 3508–3515 (2004) CrossRefGoogle Scholar
  26. 26.
    Rogers, S., Sceltema, R.E., Girolami, M., Breitling, R.: Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics 25(4), 512–518 (2009) CrossRefGoogle Scholar
  27. 27.
    Taylor, A., Higham, D.J.: CONTEST: A controllable test matrix toolbox for MATLAB. ACM Trans. Math. Softw. 35, 1–17 (2009) CrossRefGoogle Scholar
  28. 28.
    Thomas, A., Cannings, R., Monk, N.A.M., Cannings, C.: On the structure of protein–protein interaction networks. Biochem. Soc. Trans. 31, 1491–1496 (2003) CrossRefGoogle Scholar
  29. 29.
    Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, E., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleish, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M.: A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000) CrossRefGoogle Scholar
  30. 30.
    Vass, J.K., Higham, D.J., Mao, X., Crowther, D.: New controls of TCA-cycle genes revealed in networks built by discretization or correlation. Technical Report No. 10, Department of Mathematics (2009) Google Scholar
  31. 31.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998) CrossRefGoogle Scholar
  32. 32.
    Wishart, D.: Whisky Classified: Choosing Single Malts by Flavour, 2nd edn. Pavilion Books, London (2006) Google Scholar
  33. 33.
    Yodzis, P.: Diffuse effects in food webs. Ecology 81, 261–266 (2000) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

There are no affiliations available

Personalised recommendations