Skip to main content

The Theory of the Sick Lobe

  • Chapter
  • First Online:
Book cover Breast Cancer

Abstract

Breast carcinoma is among the most frequent malignant diseases in the world and is the leading cause of premature death among younger women in developed countries. Currently, every tenth to every seventh woman in these countries will have the disease in their lifetime (Boyle and Ferlay 2005). Since 1940, the incidence of breast carcinoma has gradually increased at a rate of approximately 1% per year in Western countries (Harris et al. 1992). On the other hand, mortality from breast cancer has declined in countries with organized population-based mammography screening (Smith et al. 2004; The Swedish Organized Service Screening Evaluation Group 2006), and new efficient therapeutic regimes have led to prolonged survival of patients with improved quality of life (Hortobagyi 2005). These interventions have considerably increased the number of breast cancer survivors, and a further increase of 31% is expected in the decennium from 2005 to 2015 (De Angelis et al. 2009). Although a decreased incidence has been observed in some industrial countries over the last few years, other countries, among them China and India with their very large populations, experience a continuous and constant increase in incidence (Kawamura and Sobue 2005). An increase of 30% in the number of detected cases between 2010 and 2030 was estimated in the US based on current epidemiological trends, with a 57% increase for women older than 65 years (Smith et al. 2009). This increase may result in every fourth or every third woman in these countries carrying a risk of breast carcinoma in their lifetime (Fig. 1.1). Screening, diagnosis, and treatment will place an ever growing burden on the health care system, in addition to the psycho-social consequences for the women of coming generations. Obviously, a paradigm shift in understanding the natural history of breast carcinoma is needed to develop new and more efficient preventive, diagnostic, and therapeutic alternatives and break the negative trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agelopoulos K, Buerger H, Brandt B (2008) Allelic imbalance of the egfr gene as key event in breast cancer progression – the concept of committed progenitor cells. Curr Cancer Drug Targets 8:431–445

    Article  CAS  PubMed  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  CAS  PubMed  Google Scholar 

  • Andersen JA, Blichert-Toft M, Dyreborg U (1987) In situ carcinomas of the breast. Types, growth pattern, diagnosis and treatment. Eur J Surg Oncol 13:105–111

    CAS  PubMed  Google Scholar 

  • Asioli S, Eusebi V, Gaetano L, Losi L, Bussolati G (2008) The pre-lymphatic pathway, the roots of the lymphatic system in the breast tissue: a 3D study. Virchows Arch 453:401–406

    Article  PubMed  Google Scholar 

  • Baik I, Becker PS, Devito WJ, Lagiou P, Ballen K, Quesenberry PJ, Hsiech CC (2004) Stem cells and prenatal origin of breast cancer. Cancer Causes Control 15:517–530

    Article  PubMed  Google Scholar 

  • Boecker W, Burger H (2003) Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem cell) concept. Cell Prolif 36(Suppl 1):73–84

    Article  PubMed  Google Scholar 

  • Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe 2004. Ann Oncol 16(3):481–488

    Article  CAS  PubMed  Google Scholar 

  • Buell P (1973) Changing incidence in breast cancer in Japanese-American women. J Natl Cancer Inst 51:1479–1483

    CAS  PubMed  Google Scholar 

  • Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, Reithdorf L, Brinkschmidt C, Dockhorn-Deorniczak B, Boecker W (1999) Comparative genomic hybridization of ductal carcinoma in situ of the breast – evidence of multiple genetic pathways. J Pathol 187:396–402

    Article  CAS  PubMed  Google Scholar 

  • Cardiff RD, Wellings SR (1999) The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 4:105–122

    Article  CAS  PubMed  Google Scholar 

  • Cariati M, Purushotham AD (2008) Stem cells and breast cancer. Histopathology 52:99–107

    Article  CAS  PubMed  Google Scholar 

  • Cerhan JR, Sellers TA, Janney CA, Pankratz VS, Brandt KR, Vachon CM (2005) Prenatal and perinatal correlates of adult mammographic breast densities. Cancer Epidemiol Biomarkers Prev 14:1502–1508

    Article  PubMed  Google Scholar 

  • Cheatle GL (1921) Benign and malignant changes in duct epithelium of the breast. Br J Cancer 8:306

    Google Scholar 

  • Clarke RB (2005) Isolation of characterization of human mammary stem cells. Cell Prolif 38:375–386

    Article  CAS  PubMed  Google Scholar 

  • Clarke CA, Glaser SL, West DW, Ereman RR, Erdmann CA, Barlow JM, Wrensch MR (2002) Breast cancer incidence and mortality trends in an affluent population: Marin County, California, USA, 1990–1996. Breast Cancer Res 4:R13

    Article  PubMed  Google Scholar 

  • Clarke CL, Sandle J, Jones AA, Sofronis A, Patani NR, Lakhani SR (2006a) Mapping loss of heterozygosity in normal human breast cells from BRCA1/2 carriers. Br J Cancer 95:515–519

    Article  CAS  PubMed  Google Scholar 

  • Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jammison CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006b) Cancer stem cells – perspectives on current status and future directions. Cancer Res 66:9339–9344

    Article  CAS  PubMed  Google Scholar 

  • Dawson FK (1933) Carcinoma in the mammary lobule and its origin. Edinb Med J 40:57–82

    Google Scholar 

  • De Angelis R, Tavilla A, Verdechia A, Scoppa S, Hachey M, Feuer EJ, Mariotto AB (2009) Breast cancer survivors in the United States: geographic variability and time trends, 2005–2015. Cancer 115:1954–1966

    Article  PubMed  Google Scholar 

  • Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinoma. Science 274:2057–2059

    Article  CAS  PubMed  Google Scholar 

  • Deome KB, Faulkin IJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:515–520

    CAS  PubMed  Google Scholar 

  • Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J Clin Pharmacol 45:872–907

    Article  CAS  PubMed  Google Scholar 

  • Dooley WC (2003) Routine operative breast endoscopy during lumpectomy. Ann Surg Oncol 10:38–42

    Article  PubMed  Google Scholar 

  • Easton DF, Steele L, Fields P, Orminston W, Averill D, Daly PA, McManus R, Neuhausen ST, Ford D, Wooster R, Cannon-Albright LA, Stratton MR, Goldgar DE (1997) Cancer risk in two large breast cancer families linked to BRCA2 on chromosome 13q12-13. Am J Hum Genet 61:120–128

    Article  CAS  PubMed  Google Scholar 

  • Ewing J (1940) Neoplastic diseases. A treatise of tumors, 4th edn. Saunders WB, Philadelphia, p 568

    Google Scholar 

  • Faverly DRG, Henricks JHCL, Holland R (2001) Breast carcinoma of limited extent. Frequency, radiologic–pathologic characteristics, and surgical margin requirements. Cancer 91:647–659

    Article  CAS  PubMed  Google Scholar 

  • Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90:1371–1388

    Article  CAS  PubMed  Google Scholar 

  • Fisher B, Anderson S, Bryant J, Margolese RG, Deutsch M, Fisher ER, Jaong JH, Wolmark N (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347:1233–1241

    Article  PubMed  Google Scholar 

  • Ford D, Easton DF, Bishop DT, Narod SA, Godgar DE (1994) Risk of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343:692–695

    Article  CAS  PubMed  Google Scholar 

  • Foschini MP, Flamminio F, Miglio R, Calo DG, Cucchi MC, Masetti R, Eusebi V (2007) The impact of large sections on the study of in situ and invasive duct carcinoma of the breast. Hum Pathol 38:1736–1743

    Article  PubMed  Google Scholar 

  • Gallagher S, Martin JE (1969) Early phases in the development of breast cancer. Cancer 24:1170–1178

    Article  Google Scholar 

  • Going JJ, Moffat DF (2004) Escaping from flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions. J Pathol 203:538–544

    Article  PubMed  Google Scholar 

  • Going JJ, Mohun TJ (2006) Human breast duct anatomy, the ‘sick lobe’ hypothesis and intraductal approaches to breast cancer. Breast Cancer Res Treat 97:285–291

    Article  PubMed  Google Scholar 

  • Goldstein NS, Kestin LJ, Vicini FA (2007) Monomorphic epithelial proliferations. Characterization and evidence suggesting they are the pool of partially transformed lesions from which some invasive carcinomas arise. Am J Clin Pathol 128:1023–1034

    Article  PubMed  Google Scholar 

  • Gudjonsson T, Magnusson MK (2005) Stem cell biology and the pathways of carcinogenesis. APMIS 113:922–929

    Article  PubMed  Google Scholar 

  • Harper S, Lynch J, Meersman SC, Breen N, Davis WW, Reichman MC (2009) Trends in area-socioeconomic and race-ethnic disparities in breast cancer incidence, stage at diagnosis, screening, mortality, and survival among women ages 50 years and over (1987–2005). Cancer Epidemiol Biomarkers Prev 18:121–131

    Article  PubMed  Google Scholar 

  • Harris JR, Lippman ME, Veronesi U, Willet W (1992) Breast cancer. N Engl J Med 327:319–328

    Article  CAS  PubMed  Google Scholar 

  • Heaphy CM, Griffith JK, Bisoffi M (2009) Mammary field cancerization: molecular evidence and clinical importance. Breast Cancer Res Treat 118:229–239

    Article  PubMed  Google Scholar 

  • Hill AD, Doyle JM, McDermott EW, O’Higgins NJ (1997) Hereditary breast cancer. Br J Surg 84:1334–1339

    Article  CAS  PubMed  Google Scholar 

  • Holland R, Hendricks JH, Vebeek AL, Mravunac M, Schuurmans Stekhoven JH (1990) Extent, distribution, and mammographic/histological correlation of breast ductal carcinoma in situ. Lancet 335:519–522

    Article  CAS  PubMed  Google Scholar 

  • Honeth G, Bendahl PO, Ringnér M, Saal LH, Gruvbenger-Saal SK, Lövgren K, Grabau D, Fernö M, Borg A, Hegardt C (2008) The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10:R53

    Article  PubMed  Google Scholar 

  • Hortobagyi GN (2005) Trastuzumab in the treatment of breast cancer. N Engl J Med 353:1734–1736

    Article  CAS  PubMed  Google Scholar 

  • Howard BA, Gustersson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5:119–137

    Article  CAS  PubMed  Google Scholar 

  • Jolicoeur F, Gaboury LA, Oligny LL (2003) Basal cells of second trimester fetal breasts: immunohistochemical study of myoepithelial precursors. Pediatr Dev Pathol 6:398–413

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Merrett S, Thomas VA, Barker TH, Lakhani SR (2003) Comparative genomic hybridization analysis of bilateral hyperplasia of usual type of the breast. J Pathol 199:152–156

    Article  CAS  PubMed  Google Scholar 

  • Kawamura T, Sobue T (2005) Comparison of breast cancer mortality in five countries: France, Italy, Japan, the UK and the USA from the WHO mortality database (1960–2000). Jpn J Clin Oncol 35:758–759

    Article  PubMed  Google Scholar 

  • Lakhani SR, Collins N, Sloane JP, Stratton MR (1995a) Loss of heterozygosity in lobular carcinoma in situ of the breast. Clin Mol Pathol 48:M74–M78

    Article  CAS  PubMed  Google Scholar 

  • Lakhani SR, Collins N, Stratton MR, Sloane JP (1995b) Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosome 16q and 17p. J Clin Pathol 48:611–615

    Article  CAS  PubMed  Google Scholar 

  • Lakhani SR, Slack DN, Hamoudi RA, Collins N, Stratton MR, Sloane JP (1996) Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. Lab Invest 74:129–135

    CAS  PubMed  Google Scholar 

  • Lakhani SR, Chaggar R, Davies S, Jones C, Collins N, Odell C, Stratton MR, O’Hare M (1999) Genetic alterations in “normal” luminal and myoepithelial cells of the breast. J Pathol 189:496–503

    Article  CAS  PubMed  Google Scholar 

  • Lányi M (1977) Differential diagnosis of microcalcifications, X-ray film analysis of 60 intraductal carcinoma, the triangle principle. Radiologe 17:213–216

    PubMed  Google Scholar 

  • Little P, Boice JD Jr (1999) Comparison of breast cancer incidence in the Massachusetts tuberculosis fluoroscopy cohort and in the Japanese atomic bomb survivors. Radiat Res 151:218–224

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wisha MS (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 105:1680–1685

    Article  CAS  PubMed  Google Scholar 

  • Mai KT, Yazdi HM, Burns BF, Perkins DG (2000) Pattern of distribution of intraductal and infiltrating ductal carcinoma: Three-dimensional study using serial coronal giant sections of the breast. Hum Pathol 31:464–474

    Article  CAS  PubMed  Google Scholar 

  • Meng ZH, Ben Y, Li Z, Chew K, Ljung BM, Lagios MD, Dairkee SH (2004) Aberrations of breast cancer susceptibility genes occur early in sporadic breast tumors and in acquisition of breast epithelial immortalization. Genes Chromosomes Cancer 41:214–222

    Article  CAS  PubMed  Google Scholar 

  • Middleton LP, Vlastos G, Mirza NQ, Eva S, Sahin AA (2002) Multicentric mammary carcinoma, evidence of monoclonal proliferation. Cancer 94:1910–1916

    Article  PubMed  Google Scholar 

  • Ohtake T, Abe R, Kimijima I, Fukushima T, Tsuchiya A, Hashi K, Wakasa H (1995) Intraductal extension of primary invasive breast carcinoma treated by breast-conservative surgery. Computer graphic three-dimensional reconstruction of the mammary duct-lobular systems. Cancer 76:32–45

    Article  CAS  PubMed  Google Scholar 

  • Page DL, Rogers LW, Schuyler PA, Dupont WD, Jensen RA (2002) The natural history of ductal carcinoma in situ of the breast. In: Silverstein MJ (ed) Ductal carcinoma of the breast, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 17–21

    Google Scholar 

  • Ramakrishnan R, Seema AK, Badve S (2002) Morphologic changes in breast tissue with menstrual cycle. Mod Pathol 15:1348–1356

    Article  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissmann IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  CAS  PubMed  Google Scholar 

  • Ruder EH, Dorgan JF, Kranz S, Kris-Etherton PM, Hartman TJ (2008) Examining breast cancer growth and lifetime risk factors: early life, childhood and adolescence. Clin Breast Cancer 8:334–342

    Article  PubMed  Google Scholar 

  • Rudland PS (1991) Histochemical organization and cellular composition of ductal buds in developing human breast: evidence of cytochemical intermediates between epithelial and myoepithelial cells. J Histochem Cytochem 39:1471–1484

    CAS  PubMed  Google Scholar 

  • Russo J, Russo IH (2004) Molecular basis of breast cancer. Prevention and treatment. Springer, Berlin/Heidelberg/New York/Hong Kong/London/Milan/Paris/Tokio

    Google Scholar 

  • Sager R (1997) Expression genetics in cancer: shifting the focus from DNA to RNA. Proc Natl Acad Sci USA 94:952–955

    Article  CAS  PubMed  Google Scholar 

  • Sakakura T, Ishihara A, Yatani R (1991) Tenascin in mammary gland development: from embryogenesis to carcinogenesis. Cancer Treat Res 53:383–400

    CAS  PubMed  Google Scholar 

  • Simpson PT, Gale T, Reis-Filho JS, Jones C, Parry S, Sloane JP, Hanby A, Pinder SE, Lee AH, Humphreys S, Ellis IO, Lakhani SR (2005) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29:734–736

    Article  PubMed  Google Scholar 

  • Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium: clinical implications of multicentric origin. Cancer 6:963–968

    Article  CAS  PubMed  Google Scholar 

  • Smith GH, Boulanger CA (2003) Mammary epithelial stem cells transplantation and self-renewal analysis. Cell Prolif 36(Suppl 1):3–15

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Duffy SW, Gabe R, Tabár L, Yen AM, Chen TH (2004) The randomized trials of breast cancer screening: what have we learned? Radiol Clin North Am 42:793–806

    Article  PubMed  Google Scholar 

  • Smith BD, Smith GL, Hurria A, Hortobagyi GN, Buchholz TA (2009) Future of cancer incidence in the United States: burdens upon aging, changing nation. J Clin Oncol 27:1–10

    Article  Google Scholar 

  • Stratton MR, Collins N, Lakhani SR, Sloane JP (1995) Loss of heterozygosity in ductal carcinoma in situ of the breast. J Pathol 175:195–201

    Article  CAS  PubMed  Google Scholar 

  • Tabár L, Chen HT, Yen MFA, Tot T, Tung TH, Chen LS, Chiu YH, Duffy SW, Smith RA (2004) Mammographic tumor features can predict long-term outcomes reliably in women with 1–14 mm invasive carcinoma. Cancer 101:1745–1759

    Article  PubMed  Google Scholar 

  • Tabár L, Tot T, Dean PB (2007) Breast cancer. Early detection with mammography. Casting type calcifications: sign of a subtype with deceptive features. Thieme, Stuttgart/New York

    Google Scholar 

  • Tabár L, Tot T, Dean PB (2008) Crushed stone-like calcifications: the most frequent malignant type. Thieme, Stuttgart/New York

    Google Scholar 

  • Tavassoli FA, Devili P (eds) (2003) World Health Organization classification of tumors. Pathology & genetics. Tumors of the breast and female genital organs. IARC, Lyon, p 63

    Google Scholar 

  • Teboul M, Halliwell M (1995) Atlas of ultrasound and ductal echography of the breast: the introduction of anatomic intelligence into breast imaging. Wiley-Blackwell, UK, p 380

    Google Scholar 

  • The Swedish Organized Service Screening Evaluation Group (2006) Reduction in breast cancer mortality from organized service screening with mammography: 1. Further confirmation with expanded data. Cancer Epidemiol Biomarkers Prev 15:45–51

    Article  Google Scholar 

  • Tot T (2005a) Correlating the ground truth of mammographic histology with the success or failure of imaging. Technol Cancer Res Treat 4:23–28

    PubMed  Google Scholar 

  • Tot T (2005b) DCIS, cytokeratins, and the theory of the sick lobe. Virchows Arch 447:1–8

    Article  PubMed  Google Scholar 

  • Tot T (2007a) The theory of the sick breast lobe and the possible consequences. Int J Surg Pathol 15:369–375

    Article  PubMed  Google Scholar 

  • Tot T (2007b) How to eradicate breast carcinomas: a hypothetical way of breast cancer prevention based on the theory of the sick lobe. In: Litchfield JE (ed) New research in precancerous conditions. Nova, New York, pp 165–181

    Google Scholar 

  • Tot T (2007c) The clinical relevance of the distribution of the lesions in 500 consecutive breast cancer cases documented in large-format histological sections. Cancer 110:2551–2560

    Article  PubMed  Google Scholar 

  • Tot T (2009) The metastatic capacity of multifocal breast carcinomas: extensive tumors versus tumors of limited extent. Hum Pathol 40:199–205

    Article  PubMed  Google Scholar 

  • Tot T, Tabár L (2005) Radiologic–pathologic correlation of ductal carcinoma in situ of the breast using two- and three-dimensional large histologic sections. Semin Breast Dis 8:144–151

    Article  Google Scholar 

  • Tot T, Tabár L, Dean PB (2000) The pressing need for better histologic–mammographic correlation of the many variations in normal breast anatomy. Virchows Arch 437:338–344

    Article  CAS  PubMed  Google Scholar 

  • Tot T, Tabár L, Dean PB (2002) Practical breast pathology. Thieme, Stuttgart/New York

    Google Scholar 

  • Tot T, Pekár G, Hofmeyer S, Sollie T, Gere M, Tarján M (2009) The distribution of lesions in 1–14-mm invasive breast carcinomas and its relation to metastatic potential. Virchows Arch 455:109–115

    Article  CAS  PubMed  Google Scholar 

  • Trichopoulos D (1990) Hypothesis: does breast cancer originate in utero? Lancet 335:939–940

    Article  CAS  PubMed  Google Scholar 

  • Tsai YC, Lu Y, Nichols PW, Zlotnikow G, Jones PA, Smith HS (1996) Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res 56:402–404

    CAS  PubMed  Google Scholar 

  • Villadsen R (2005) In search of stem cell hierarchy in the human breast and its relevance in breast cancer evolution. APMIS 113:903–921

    Article  PubMed  Google Scholar 

  • Villadsen R, Fridriksdottir AJ, Ronnov-Jenssen L, Gudjunsson T, Rank F, LaBarge MA, Bissell MJ, Petersen OW (2007) Evidence for stem cell hierarchy in the adult human breast. J Cell Biol 177:87–101

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15:514–526

    Article  CAS  PubMed  Google Scholar 

  • Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55:231–273

    CAS  PubMed  Google Scholar 

  • Wiechmann L, Kuerer HM (2008) The molecular journey from ductal carcinoma in situ to invasive breast cancer. Cancer 112:2130–2142

    Article  PubMed  Google Scholar 

  • Wolff MS, Collman GW, Barrett JC, Huff J (1996) Breast cancer and environmental risk factors: epidemiological and experimental findings. Annu Rev Pharmacol Toxicol 36:573–596

    Article  CAS  PubMed  Google Scholar 

  • Xue F, Michels KB (2007) Intrauterine factors and risk of breast cancer: a systemic review and meta-analysis of current evidence. Lancet Oncol 8:1088–1100

    Article  PubMed  Google Scholar 

  • Yan PS, Venkataramu C, Ibrahim A, Liu JC, Shen RZ, Diaz NM, Centeno B, Webel F, Leu UW, Shapiro CL, Eng C, Yeatman TJ, Huang TH (2006) Mapping geographic zones of cancer risk with epigenetic biomarkers in normal breast tissue. Clin Cancer Res 12:6626–6636

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Tot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Tot, T. (2010). The Theory of the Sick Lobe. In: Tot, T. (eds) Breast Cancer. Springer, London. https://doi.org/10.1007/978-1-84996-314-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-314-5_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-313-8

  • Online ISBN: 978-1-84996-314-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics