Skip to main content

Geometric Tolerance Specification

  • Chapter
Geometric Tolerances

Abstract

In conventional tolerancing, the efforts of designers are mainly directed at selecting suitable values for linear tolerances on part dimensions. These are either determined by trial and error through analysis calculations or optimized according to cost functions. In the transition to geometric dimensioning and tolerancing, the assignment of tolerance values must be preceded by a careful specification of the types of tolerances to be applied on part features. Along with the interrelations among features provided by datum systems, these define a tolerance model which captures design intent and is essential for the allocation and analysis of tolerance values. This chapter reviews the methods available for the specification of geometric tolerances, from common engineering practice to the development of computer-aided support tools. In the description of input data for tolerance specification, special attention is given to design requirements related to fit and function. The general strategy for the resolution of the problem is discussed, with focus on empirical specification rules and tolerance representation models which allow finite sets of tolerancing cases to be classified. The main approaches proposed in the literature for the generative specification of geometric tolerances are described and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdullah TA, Popplewell K, Page CJ (2003) A review of the support tools for the process of assembly method selection and assembly planning. Int J Prod Res 41(11):2391–2410

    Article  Google Scholar 

  • Anselmetti B (2006) Generation of functional tolerancing based on positioning features. Comput Aided Des 38:902–919

    Article  Google Scholar 

  • Anselmetti B, Mawussi K (2003) Computer aided tolerancing using positioning features. ASME J Comput Inf Sci Eng 3:15–21

    Article  Google Scholar 

  • ASME Y14.5.1 (1994) Dimensioning and tolerancing. American Society of Mechanical Engineers, New York

    Google Scholar 

  • ASME Y14.5.1.M (1994) Mathematical definition of dimensioning and tolerancing principles. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Ballu A, Mathieu L (1999) Choice of functional specifications using graphs within the framework of education. In: Proceedings of the CIRP seminar on computer-aided tolerancing, Twente, pp 197–206

    Google Scholar 

  • Bjørke O (1989) Computer-aided tolerancing. ASME Press, New York

    Google Scholar 

  • Buysse D, Socoliuc M, Rivière A (2007) A new specification model for realistic assemblies simulation. In: Proceedings of the CIRP international conference on computer-aided tolerancing, Erlangen

    Google Scholar 

  • Carr CD (1993) A comprehensive method for specifying tolerance requirements for assembly. ADCATS report 93-1

    Google Scholar 

  • Chiabert P, Orlando M (2004) About a CAT model consistent with the ISO/TC 213 last issues. J Mater Proc Technol 157/158:61–66

    Article  Google Scholar 

  • Clément A, Rivière A (1993) Tolerancing versus nominal modeling in next generation CAD/CAM system. In: Proceedings of the CIRP seminar on computer-aided tolerancing, Cachan, pp 97–113

    Google Scholar 

  • Clément A, Rivière A, Temmerman M (1994) Cotation tridimensionelle des systèmes mécaniques. PYC, Yvry-sur-Siene

    Google Scholar 

  • Clément A, Rivière A, Serré P (1995) A declarative information model for functional requirements. In: Proceedings of the CIRP seminar on computer-aided tolerancing, Tokyo, pp 3–16

    Google Scholar 

  • Cogorno GR (2006) Geometric dimensioning and tolerancing for mechanical design. McGraw-Hill, New York

    Google Scholar 

  • Dantan JY, Anwer N, Mathieu L (2003a) Integrated tolerancing process for conceptual design. CIRP Ann 52(1):135–138

    Article  Google Scholar 

  • Dantan JY, Ballu A, Martin P (2003b) Mathematical formulation of tolerance synthesis taking into account the assembly process. In: Proceedings of the IEEE international symposium on assembly and task planning, Besançon, pp 241–246

    Google Scholar 

  • Dantan JY, Mathieu L, Ballu A, Martin P (2005) Tolerance synthesis: quantifier notion and virtual boundary. Comput Aided Des 37:231–240

    Article  Google Scholar 

  • Desrochers A, Maranzana R (1995) Constrained dimensioning and tolerancing assistance for mechanisms. In: Proceedings of the CIRP seminar on computer-aided tolerancing, Tokyo, pp 17–30

    Google Scholar 

  • Drake PJ (1999) Dimensioning and tolerancing handbook. McGraw-Hill, New York

    Google Scholar 

  • Dufaure J, Teissandier D, Debarbouille G (2005) Influence of the standard components integration on the tolerancing activity. In: Proceedings of the CIRP international seminar on computer-aided tolerancing, Tempe, pp 235–244

    Google Scholar 

  • Farmer LE, Gladman CA (1986) Tolerance technology: computer-based analysis. CIRP Ann 35(1):7–10

    Article  Google Scholar 

  • Giordano M, Pairel E, Hernandez P (2005) Complex mechanical structure tolerancing by means of hyper-graphs. In: Proceedings of the CIRP international seminar on computer-aided tolerancing Tempe, pp 105–114

    Google Scholar 

  • Hong YS, Chang TC (2002) A comprehensive review of tolerancing research. Int J Prod Res 40(11):2425–2459

    Article  MATH  Google Scholar 

  • Hu J, Xiong G (2005a) Dimensional and geometric tolerance design based on constraints. Int J Adv Manuf Technol 26:1099–1108

    Article  Google Scholar 

  • Hu J, Xiong G (2005b) Concurrent design of a geometric parameter and tolerance for assembly and cost. Int J Prod Res 43(2):267–293

    Article  MATH  Google Scholar 

  • Hu J, Xiong G, Wu Z (2004) A variational geometric constraints network for a tolerance types specification. Int J Adv Manuf Technol 24:214–222

    Google Scholar 

  • Islam MN (2004a) Functional dimensioning and tolerancing software for concurrent engineering applications. Comput Ind 54:169–190

    Article  Google Scholar 

  • Islam MN (2004b) A methodology for extracting dimensional requirements for a product from customer needs. Int J Adv Manuf Technol 23:489–494

    Article  Google Scholar 

  • ISO 1101 (2004) Geometrical product specifications (GPS) – geometrical tolerancing – tolerances of form, orientation, location and run-out. International Organization for Standardization, Geneva

    Google Scholar 

  • Jayaraman R, Srinivasan B (1989) Geometric tolerancing: I. Virtual boundary requirements. IBM J Res Dev 33(2):90–104

    Article  MATH  MathSciNet  Google Scholar 

  • Kandikjan T, Shah JJ, Davidson JK (2001) A mechanism for validating dimensioning and tolerancing schemes in CAD systems. Comput Aided Des 33:721–737

    Article  Google Scholar 

  • Kim KY, Wang Y, Mougboh OS, Nnaji BO (2004) Design formalism for collaborative assembly design. Comput Aided Des 36:849–871

    Article  Google Scholar 

  • McAdams DA (2003) Identification and codification of principles for functional tolerance design. J Eng Des 14(3):355–375

    Article  Google Scholar 

  • Meadows JD (1995) Geometric dimensioning and tolerancing: applications and techniques for use in design, manufacturing and inspection. Dekker, New York

    Google Scholar 

  • Mejbri H, Anselmetti B, Mawussi B (2003) A recursive tolerancing method with sub-assembly generation. In: Proceedings of the IEEE international symposium on assembly and task planning, Besançon, pp 235–240

    Google Scholar 

  • Mejbri H, Anselmetti B, Mawussi K (2005) Functional tolerancing of complex mechanisms: identification and specification of key parts. Comput Ind Eng 49:241–265

    Article  Google Scholar 

  • Mliki MN, Mennier D (1995) Dimensioning and functional tolerancing aided by computer in CAD/CAM systems: application to Autocad system. In: Proceedings of the INRIA/IEEE symposium on emerging technologies and factory automation, Paris, pp 421–428

    Google Scholar 

  • Mullins SH, Anderson DC (1998) Automatic identification of geometric constraints in mechanical assemblies. Comput Aided Des 30(9):715–726

    Article  MATH  Google Scholar 

  • Narahari Y, Sudarsan R, Lyons KW et al (1999) Design for tolerance of electro-mechanical assemblies: an integrated approach. IEEE Trans Robot Autom 15(6):1062–1079

    Article  Google Scholar 

  • Nassef AO, ElMaraghy HA (1997) Allocation of geometric tolerances: new criterion and methodology. CIRP Ann 46(1):101–106

    Article  Google Scholar 

  • Pérez R, De Ciurana J, Riba C (2006) The characterization and specification of functional requirements and geometric tolerances in design. J Eng Des 17(4):311–324

    Article  Google Scholar 

  • Ramani B, Cheraghi SH, Twomey JM (1998) CAD-based integrated tolerancing system. Int J Prod Res 36(10):2891–2910

    Article  MATH  Google Scholar 

  • Roy U, Bharadwaj B (1996) Tolerance synthesis in a product design system. In: Proceedings of NAMRC, Ann Arbor

    Google Scholar 

  • Salomons OW (1995) Computer support in the design of mechanical products – constraints specification and satisfaction in feature based design and manufacturing. PhD thesis, University of Twente

    Google Scholar 

  • Salomons OW, Jonge Poerink HJ, Haalboom FJ et al (1996) A computer aided tolerancing tool I: tolerance specification. Comput Ind 31:161–174

    Article  Google Scholar 

  • Shah JJ, Yan Y, Zhang BC (1998) Dimension and tolerance modeling and transformations in feature based design and manufacturing. J Intell Manuf 9:475–488

    Article  Google Scholar 

  • Söderberg R, Johannesson H (1999) Tolerance chain detection by geometrical constraint based coupling analysis. J Eng Des 10(1):5–24

    Article  Google Scholar 

  • Srinivasan B, Jayaraman R (1989) Geometric tolerancing: II. Conditional tolerances. IBM J Res Dev 33(2):105–125

    Article  MATH  MathSciNet  Google Scholar 

  • Sudarsan R, Narahari Y, Lyons KW et al (1998) Design for tolerance of electro-mechanical assemblies. In: Proceedings of the IEEE international conference on robotics and automation, Leuven, pp 1490–1497

    Google Scholar 

  • Teissandier D, Dufaure J (2007) Specifications of a pre and post-processing tool for a tolerancing analysis solver. In: Proceedings of the CIRP international conference on computer-aided tolerancing, Erlangen

    Google Scholar 

  • Toulorge H, Rivière A, Bellacicco A et al (2003) Towards a digital functional assistance process for tolerancing. ASME J Comput Inf Sci Eng 3:39–44

    Article  Google Scholar 

  • Voelcker HB (1998) The current state of affairs in dimensional tolerancing: 1997. Integr Manuf Syst 9(4):205–217

    Article  Google Scholar 

  • Wang H, Roy U, Sudarsan R et al (2003) Functional tolerancing of a gearbox. In: Proceedings of NAMRC, Hamilton

    Google Scholar 

  • Wang H, Ning R, Yan Y (2006) Simulated tolerances CAD geometrical model and automatic generation of 3D tolerance chains. Int J Adv Manuf Technol 29:1019–1025

    Article  Google Scholar 

  • Weill R (1988) Tolerancing for function. CIRP Ann 37(2):603–610

    Article  Google Scholar 

  • Weill RD (1997) Dimensioning and tolerancing for function. In: Zhang HC (ed) Advanced tolerancing techniques. Wiley, New York

    Google Scholar 

  • Whitney DE (1996) The potential for assembly modeling in product development and manufacturing. Technical report. The Center for Technology, Policy and Industrial Development, MIT, Cambridge

    Google Scholar 

  • Whitney DE, Mantripragada R, Adams JD et al (1999) Designing assemblies. Res Eng Des 11:229–253

    Article  Google Scholar 

  • Willhelm RG, Lu SCY (1992) Tolerance synthesis to support concurrent engineering. CIRP Ann 41(1):197–200

    Article  Google Scholar 

  • Wu Y, Shah JJ, Davidson JK (2003) Computer modeling of geometric variations in mechanical parts and assemblies. ASME J Comput Inf Sci Eng 3:54–63

    Article  Google Scholar 

  • Zou Z, Morse EP (2004) A gap-based approach to capture fitting conditions for mechanical assembly. Comput Aided Des 36:691–700

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Armillotta, A., Semeraro, Q. (2011). Geometric Tolerance Specification. In: Colosimo, B., Senin, N. (eds) Geometric Tolerances. Springer, London. https://doi.org/10.1007/978-1-84996-311-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-311-4_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-310-7

  • Online ISBN: 978-1-84996-311-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics