Skip to main content

Benefits of Ultrafiltration for Pulmonary Function

  • Chapter
  • First Online:
  • 1043 Accesses

Abstract

Cardiopulmonary bypass (CPB), using hypothermia with crystalloid hemodilution, is associated with a capillary leak, which results in an increase in tissue water content, manifested as an increase in total body water after cardiac operation.1 Also, CPB induces activation of inflammatory cascades, resulting in activation of neutrophils, platelets, and endothelium,2,3 which release rumor necrosis factor alpha (TNF-α), interleukins (ILs), and other inflammatory mediators.4 Pulmonary injury, induced by an increase in tissue water and activation of the inflammatory reaction, is one of the complications of CPB with a high incidence. This may adversely affect cardiopulmonary interactions after surgery, delaying extubation and discharge from the intensive care unit (ICU).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Butler J, Rocker GM, Westaby S. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1993;55:552-559.

    Article  PubMed  CAS  Google Scholar 

  2. Mazer CD, Hornstein A, Freedman J. Platelet activation in warm and cold heart surgery. Ann Thorac Surg. 1995;59:1481-1486.

    Article  PubMed  CAS  Google Scholar 

  3. Elliott MJ, Finn AHR. Interaction between neutrophils and endothelium. Ann Thorac Surg. 1993;56:1503-1508.

    Article  PubMed  CAS  Google Scholar 

  4. Kalfin RE, Engelman RM, Rousou JA, et al. Induction of interleukin-8 expression during cardiopulmonary bypass. Circulation. 1993;88:401-406.

    Google Scholar 

  5. Elliott MJ. Minimizing the bypass circuit: a rational step in the development of paediatric perfusion. Perfusion. 1993;8:81-86.

    Article  PubMed  CAS  Google Scholar 

  6. Magilligan DJ. Indication of ultrafiltration in the cardiac surgical patient. J Thorac Cardiovasc Surg. 1985;89:183-189.

    PubMed  Google Scholar 

  7. Naik SK, Knight A, Elliott MJ. A successful modification of ultrafiltration for cardiopulmonary bypass in children. Perfusion. 1991;6:41-50.

    Article  PubMed  CAS  Google Scholar 

  8. Naik SK, Knight A, Elliott M. A prospective randomized study of a modified technique of ultrafiltration during pediatric open-heart surgery. Circulation. 1991;84(5 suppl):III422-III431.

    PubMed  CAS  Google Scholar 

  9. Wang W, Huang HM, Zhu DM, et al. Modified ultrafiltration in pediatric cardiopulmonary bypass. Perfusion. 1998;13:304-311.

    Article  PubMed  CAS  Google Scholar 

  10. Schlunzen L, Pedersen J, Hjortholm K, et al. Modified ultrafiltration in pediatric cardiac surgery. Perfusion. 1998; 13:105-109.

    Article  PubMed  CAS  Google Scholar 

  11. Kameyama T, Ando F, Okamoto F, et al. The effect of modified ultrafiltration in pediatric open-heart surgery. Ann Thorac Cardiovasc Surg. 2000;6:19-26.

    PubMed  CAS  Google Scholar 

  12. Li CM, Alfieres GM, Walker MJ, et al. Modified venovenous ultrafiltration in infant cardiac surgery [abstract]. J Am Coll Cardiol. 1995;25:200A.

    Article  Google Scholar 

  13. Braun SR, Birnbaum ML, Chopra PS. Pre- and postoperative pulmonary function abnormalities in coronary artery revascularization surgery. Chest. 1978;73:316-320.

    Article  PubMed  CAS  Google Scholar 

  14. Schenkman Z, Shir Y, Weiss YG, et al. The effects of cardiac surgery on early and late pulmonary functions. Acta Anaesthesiol Scand. 2000;44:75-81.

    Article  Google Scholar 

  15. Deal C, Osborn J, Miller CJ, et al. Pulmonary compliance in congenital heart disease and its relation to cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1968;55:320-327.

    PubMed  CAS  Google Scholar 

  16. Karlson K, Saklad M, Paliotta J, et al. Computerized on-line analysis of pulmonary mechanics in patients undergoing cardiopulmonary bypass. Bull Soc Int Chir. 1975;2:121-124.

    Google Scholar 

  17. Staton GW, Williams WH, Mahoney EM, et al. Pulmonary outcomes of off-pump vs on-pump coronary artery bypass surgery in a randomized trial. Chest. 2005;127:892-901.

    Article  PubMed  Google Scholar 

  18. Babik B, Aszalos T, Petak F, et al. Changes in respiratory mechanics during cardiac surgery. Anesth Analg. 2003; 96:1280-1287.

    Article  PubMed  Google Scholar 

  19. Kyosola K, Takkunen O, Maamies T, et al. Bronchospasm during cardiopulmonary bypass: a potential fatal complication of open-heart surgery. J Thorac Cardiovasc Surg. 1987;35:375-377.

    Article  CAS  Google Scholar 

  20. Tuman KJ, Ivankovich AD. Bronchospasm during cardiopulmonary bypass. Etiology and management. Chest. 1986;90:635-637.

    Article  PubMed  CAS  Google Scholar 

  21. Chenoweth DE. The properties of human C5a anaphylatoxin. The significance of C5a formation during hemodialysis. Contrib Nephrol. 1987;59:51-71.

    PubMed  CAS  Google Scholar 

  22. Lees MH, Way RC, Ross BB. Ventilation and respiratory gas transfer of infants with increased pulmonary blood flow. Pediatrics. 1967;40:259.

    PubMed  CAS  Google Scholar 

  23. Downes JJ, Nicodemus HF, Pierce WS, et al. Acute respiratory failure in infants following cardiovascular surgery. J Thorac Cardiovasc Surg. 1970;59:21.

    PubMed  CAS  Google Scholar 

  24. Yates QP, Lindahl SGE, Hatch DJ. Pulmonary ventilation and gas exchange before and after correction of congenital cardiac malformations. Br J Anaesth. 1987;59:170.

    Article  PubMed  CAS  Google Scholar 

  25. DiCarlo JV, Steven JM. Respiratory failure in congenital heart disease. Pediatr Clin North Am. 1994;41:525-542.

    PubMed  CAS  Google Scholar 

  26. Tonz M, Tomislav M, Von Segesser LK, et al. Acute lung injury during cardiopulmonary bypass. Chest. 1995;108:1551-1557.

    Article  PubMed  CAS  Google Scholar 

  27. DiCarlo JV, Raphaely RC, Steven JM, et al. Pulmonary mechanics in infants after cardiac surgery. Crit Care Med. 1992;20:22.

    Article  PubMed  CAS  Google Scholar 

  28. Miller BE, Levy JH. The inflammatory response to cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1997;11:355-366.

    Article  PubMed  CAS  Google Scholar 

  29. Kirklin JK, Westaby S, Blackstone EH, et al. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1983;86:845.

    PubMed  CAS  Google Scholar 

  30. Pang LM, Stalcup SA, Lipset JS, et al. Increased circulating bradykinin during hypothermia and cardiopulmonary bypass in children. Circulation. 1979;60:1503-1507.

    Article  PubMed  CAS  Google Scholar 

  31. Millar AB, Armstrong L, van der Linden J, et al. Cytokine production and hemofiltration in children undergoing cardiopulmonary bypass. Ann Thorac Surg. 1993;56:1499-1502.

    Article  PubMed  CAS  Google Scholar 

  32. Faymonville ME, Deby DG, Larbuisson R, et al. Prostaglandin E2, prostacyclin, and thromboxane changes during nonpulsatile cardiopulmonary bypass in human. J Thorac Cardiovasc Surg. 1986;91:858-866.

    PubMed  CAS  Google Scholar 

  33. Giomarelli P, Scolletta S, Borrelli E, et al. Myocardial and lung injury after cardiopulmonary bypass: role of interleukin(IL)-10. Ann Thorac Surg. 2003;76:117-123.

    Article  PubMed  Google Scholar 

  34. Hopkins RA, Bull C, Haworth SG, et al. Pulmonary hypertension crises during cardiac surgery for congenital heart defects in young children. Eur J Cardiothorac Surg. 1991;5:628-634.

    Article  PubMed  CAS  Google Scholar 

  35. Bando K, Turrentive MW, Sharp TG, et al. Pulmonary hypertension after operations for congenital heart disease: analysis of risk factors and management. J Thorac Cardiovasc Surg. 1996;112:1600-1609.

    Article  PubMed  CAS  Google Scholar 

  36. Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990;323:27-36.

    Article  PubMed  CAS  Google Scholar 

  37. Cooper CJ, Landsberg MJ, Anderson TJ, et al. Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation. 1996;93:266-271.

    Article  PubMed  CAS  Google Scholar 

  38. Kirshbom PM, Jacobs MT, Tsui SS, et al. Effects of cardiopulmonary bypass and circulatory arrest on endothelium dependent vasodilation in the lung. J Thorac Cardiovasc Surg. 1996;111:1248-1256.

    Article  PubMed  CAS  Google Scholar 

  39. Wessel DL, Adatia I, Giglia TM, et al. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation. 1993;88:2128-2138.

    Article  PubMed  CAS  Google Scholar 

  40. Bando K, Vijayaraghavan P, Turrentine MW, et al. Dynamic changes of endothelin-1, nitric oxide and cyclic GMP in patients with congenital heart disease. Circulation. 1997;96(suppl):II346-II351.

    Google Scholar 

  41. Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411-415.

    Article  PubMed  CAS  Google Scholar 

  42. Komai H, Adatia IT, Elliot MJ, et al. Increased plasma levels of endothelin-1 after cardiopulmonary bypass in patients with pulmonary hypertension and congenital heart disease. J Thorac Cardiovasc Surg. 1993;106:473-478.

    PubMed  CAS  Google Scholar 

  43. Graham T. Osmotic force. Philos Trans R Soc Lond A. 1854;144:177-228.

    Article  Google Scholar 

  44. Peetom F, Gerald PS. A simple and inexpensive method for the concentration of protein solutions by means of ultrafiltration. Clin Chim Acta. 1964;10:375-376.

    Article  Google Scholar 

  45. Magilligan DJ, Oyama C. Ultrafiltration during cardiopulmonary bypass: laboratory evaluation and initial clinical experience. Ann Thorac Surg. 1984;37:33-39.

    Article  PubMed  Google Scholar 

  46. Osipo VP, Lurie MY, Mikhailov Y, et al. Hemoconcentration during open heart operation. Thorac Cardiovasc Surg. 1985;33:81-85.

    Article  Google Scholar 

  47. Ronco C, Clark W. Hollow-fiber dialyzers: technical and clinical considerations. In: Nissenson A, Fine R, eds. Clinical Dialysis. New York: McGraw-Hill; 2005:47-83.

    Google Scholar 

  48. Wheeldon D, Bethune D. Haemofiltration during cardiopulmonary bypass. Perfusion. 1990;5(suppl):39-51.

    Article  PubMed  CAS  Google Scholar 

  49. Ronco C, Ballestri M, Cappelli G. Dialysis membranes in convective treatments [see comment]. Nephrol Dial Transplant. 2000;15(suppl 2):31-36.

    Article  PubMed  Google Scholar 

  50. Craddick PR, Fehr J, Brigham KL. Complement and leucocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med. 1977;296:769-774.

    Article  Google Scholar 

  51. Bohler J, Kramer P, Gotze O. Leucocyte counts and complement activation during pump-driven and arteriovenous hemofiltration. In: Krama P, ed. Arteriovenous Hemofiltration. Gottingen: Vandenhoek & Ruprecht; 1982:187-192.

    Google Scholar 

  52. Journois D, Israel-Biet D, Pouard P, et al. High-volume, zero-balanced hemofiltration to reduce delayed inflammatory response to cardiopulmonary bypass in children. Anesthesiology. 1996;85:965-976.

    Article  PubMed  CAS  Google Scholar 

  53. Watanabe T, Sakai Y, Mayumi T, et al. Effect of ultrafiltration during cardiopulmonary bypass for pediatric cardiac surgery. Artif Organs. 1998;22:1052-1055.

    Article  PubMed  CAS  Google Scholar 

  54. Darup J, Bleese N, Kalmar P, et al. Hemofiltration during extracorporeal circulation. Thorac Cardiovasc Surg. 1979;27:227.

    Article  PubMed  CAS  Google Scholar 

  55. Tamari Y, Nelson R, Levy R, et al. Effects of the hemo-concentrator on blood. J Extra Corpor Technol. 1984;16:89-94.

    Google Scholar 

  56. Ramagnoli A, Hocker J, Keats A, et al. External hemoconcentration after deliberate hemodilution. In Abstracts of the Annual Meeting of the American Society of Anesthesiologists. Park Ridge, IL: American Society of Anesthesiologists; 1975;6:269.

    Google Scholar 

  57. Walpoth B, von Albertini B. Ultrafiltration in cardiac surgery. J Extra Corpor Technol. 1984;16:68-70.

    Google Scholar 

  58. Gaynor JW, Kuypers M, van Rossem M, et al. Haemodynamic changes during modified ultrafiltration immediately following the first stage of the Norwood reconstruction. Cardiol Young. 2005;15:4-7.

    Article  PubMed  Google Scholar 

  59. Sever K, Tansel T, Basaran M, et al. The benefits of continuous ultrafiltration in pediatric cardiac surgery. Scand Cardiovasc J. 2004;38:307-311.

    Article  PubMed  Google Scholar 

  60. Koutlas TC, Gaynor JW, Nicholson SC, et al. Modified ultrafiltration reduces postoperative morbidity after cavopulmonary connection. Ann Thorac Surg. 1997;64:37-42.

    Article  PubMed  CAS  Google Scholar 

  61. Draaisma AM, Hazekamp MG, Frank M, et al. Modified ultrafiltration after cardiopulmonary bypass in pediatric cardiac surgery. Ann Thorac Cardiovasc Surg. 1997;64:521-525.

    CAS  Google Scholar 

  62. Elliott MJ. Ultrafiltration and modified ultrafiltration in pediatric open heart operation. Ann Thorac Surg. 1993;56:1518-1522.

    Article  PubMed  CAS  Google Scholar 

  63. Bando K, Turrentine MW, Vijay P, et al. Effect of modified ultrafiltration in high-risk patients undergoing operations for congenital heart disease. Ann Thorac Surg. 1998;66:821-827.

    Article  PubMed  CAS  Google Scholar 

  64. Davies MJ, Nguyen K, Gaynor JW, et al. Modified ultrafiltration improves left ventricular systolic function in infants after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1998;115:361-369.

    Article  PubMed  CAS  Google Scholar 

  65. Groom RC, Akl BF, Albus RA, et al. Alternative method of ultrafiltration after cardiopulmonary bypass. Ann Thorac Surg. 1994;58:573-574.

    Article  PubMed  CAS  Google Scholar 

  66. Aeba R, Katogi T, Omoto T, et al. Modified ultrafiltration improves carbon dioxide removal after cardiopulmonary bypass in infants. Artif Organs. 1999;24:300-304.

    Article  Google Scholar 

  67. Bando K, Vijay P, Turrebtine MW, et al. Dilutional and modified ultrafiltration reduces pulmonary hypertension after operations for congenital heart disease: a prospective randomized study. J Thorac Cardiovasc Surg. 1998;115:517-527.

    Article  PubMed  CAS  Google Scholar 

  68. Mahmoud AS, Burhani MS, Hannef AA, et al. Effect of modified ultrafiltration on pulmonary function after cardiopulmonary bypass. Chest. 2005;128:3447-3453.

    Article  PubMed  Google Scholar 

  69. Chaturvedi RR, Shore DF, White PA, et al. Modified ultrafiltration improves global left ventricular systolic function after open-heart surgery in infants and children. Eur J Cardiothorac Surg. 1999;15:742-746.

    Article  PubMed  CAS  Google Scholar 

  70. Chew MS, brix-Christensen V, Ravn HB, et al. Effect of modified ultrafiltration on the inflammatory response in paediatric open-heart surgery: a prospective, randomized study. Perfusion. 2002;17:327-333.

    Google Scholar 

  71. Anderson S, Gothberg S, Berggren H, et al. Hemofiltration modifies complement activation after extracorporeal circulation in infants. Ann Thorac Surg. 1993;56:1515-1517.

    Article  Google Scholar 

  72. Yndgaard S, Andersen LW, Andersen C, et al. The effect of modified ultrafiltration on the amount of circulating endotoxins in children undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 2000;14:399-401.

    Article  PubMed  CAS  Google Scholar 

  73. Myung RJ, Kirshborn PM, Petko M, et al. Modified ultrafiltration may not improve neurologic outcome following deep hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2003;24:243-248.

    Article  PubMed  Google Scholar 

  74. Li J, Hoschtitzky A, Allen ML, et al. An analysis of oxygen consumption and oxygen delivery in euthermic infants after cardiopulmonary bypass with modified ultrafiltration. Ann Thorac Cardiovasc Surg. 2004;78:1389-1396.

    Google Scholar 

  75. Luciani GB, Menon T, Vecchi B, et al. Modified ultrafiltration reduces morbidity after adult cardiac operations: a prospective randomized clinical trial. Circulation. 2001;104(12 suppl 1):I253-I259.

    PubMed  CAS  Google Scholar 

  76. Boga M, Islamoglu, Badak I, et al. The effects of modified hemofiltration on inflammatory mediators and cardiac performance in coronary artery bypass grafting. Perfusion. 2000;15:143-150.

    Google Scholar 

  77. Grnnenfelder J, Zund G, Schoeberlein A, et al. Modified ultrafiltration lowers adhesion molecule and cytokine level after cardiopulmonary bypass without clinical relevance in adults. Eur J Cardiothorac Surg. 2000;17:77-83.

    Article  Google Scholar 

  78. Kiziltepe U, Uysalel A, Corapcioglu T, et al. Effects of combined conventional and modified ultrafiltration in adults patients. Ann Thorac Surg. 2001;71:684-693.

    Article  PubMed  CAS  Google Scholar 

  79. Chew MS. Does modified ultrafiltration reduce the systemic inflammatory response to cardiac surgery with cardiopulmonary bypass? Perfusion. 2004;19(suppl 1):S57-S60.

    Article  PubMed  Google Scholar 

  80. Tassani P, Richter JA, Eising GP, et al. Influence of combined zero-balanced and modified ultrafiltration on the systemic inflammatory response during coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 1999;13:285-291.

    Article  PubMed  CAS  Google Scholar 

  81. Nagashima M, Shin’oka T, Nollert G, et al. High-volume continuous hemofiltration during cardiopulmonary bypass attenuates pulmonary dysfunction in neonates lambs after deep hypothermic circulatory arrest. Circulation. 1998; 98:II378-II384.

    PubMed  CAS  Google Scholar 

  82. Schmaldienst S, Horl W. Biocompatibility. In: Nissenson A, Fine R, eds. Clinical Dialysis. 4th ed. New York: McGraw-Hill; 2005:101-125.

    Google Scholar 

  83. Berdat PA, Eichenberger E, Ebell J, et al. Elimination of proinflammatory cytokines in pediatric cardiac surgery: analysis of ultrafiltration method and filter type. J Thorac Cardiovasc Surg. 2004;127:1688-1696.

    Article  PubMed  CAS  Google Scholar 

  84. Onoe M, Magara T, Yamamoto Y, et al. Modified ultrafiltration removes serum interleukin-8 in adult cardiac surgery. Perfusion. 2001;16:37-42.

    Article  PubMed  CAS  Google Scholar 

  85. Teraoka S, Mineshima M, Hoshino T, et al. Can cytokines be removed by hemofiltration or hemoadsorption? ASAIO. 2000;46:448-451.

    Article  CAS  Google Scholar 

  86. Silverstein MEFE, Lysaght MJ, Henderson LW. Treatment of severe fluid overload by ultrafiltration. N Eng J Med. 1974;291:747-750.

    Article  CAS  Google Scholar 

  87. Garup J, Bleese N, Kalmar P, et al. Hemofiltration during extracorporeal circulation. Thorac Cardiovasc Surg. 1979;27:227-230.

    Article  Google Scholar 

  88. Onoe M, Oku H, Kitayama H. et al Modified ultrafiltration may improve postoperative pulmonary function in children with a ventricular septal defect [abstract]. Surg Today. 2001;31:586-590.

    Article  PubMed  CAS  Google Scholar 

  89. Meliones J, Gaynor JW, Wilson BG, et al. Modified ultrafiltration reduces airway pressures and improves lung compliance after congenital heart surgery [abstract]. J Am Coll Cardiol. 1995;25:271A.

    Article  Google Scholar 

  90. Keenan HT, Thiagarajan R, Stephens KE, et al. Pulmonary function after modified venovenous ultrafiltration in infants: a prospective, randomized trial. J Thorac Cardiovasc Surg. 2000;119:501-507.

    Article  PubMed  CAS  Google Scholar 

  91. Huang HM, Yao TJ, Wang W, et al. Continuous ultrafiltration attenuates the pulmonary injury that follows open heart surgery with cardiopulmonary bypass. Ann Thorac Surg. 2003;76:136-140.

    Article  PubMed  Google Scholar 

  92. Cole L, Bellomo R, Davenport P, et al. The effect of coupled haemofiltration and adsorption on inflammatory cytokines in an ex vivo model. Nephrol Dial Transplant. 2002;17:1950-1956.

    Article  PubMed  CAS  Google Scholar 

  93. Hauser GJ, Ben-Ari J, Colvin MP, et al. Interleukin-6 levels in serum and lung lavage fluid of children undergoing open heart surgery correlate with postoperative morbidity. Intensive Card Med. 1998;24:481-486.

    Article  CAS  Google Scholar 

  94. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg. 2002;21:232-244.

    Article  PubMed  CAS  Google Scholar 

  95. Wang MJ, Chiu IS, Hsu CM, et al. efficacy of ultrafiltration in removing inflammatory mediators during pediatric cardiac operations. Ann Thorac Surg. 1996;61:651-656.

    Article  PubMed  CAS  Google Scholar 

  96. Hoffmann J, Faist E. Removal of mediators by continuous hemofiltration in septic patients. World J Surg. 2001;25:651-659.

    Article  PubMed  CAS  Google Scholar 

  97. Segahaye M, Duchateau J, Bruniaux J, et al. Interleukin-10 release related to cardiopulmonary bypass in infants undergoing cardiac operations. J Thorac Cardiovasc Surg. 1996;111:545-553.

    Article  Google Scholar 

  98. BaiTera P, Janssen EM, Demacker PN, et al. Removal of interleukin-1 beta and tumor necrosis factor from human plasma by in vitro dialysis with polyacrylonitrile membranes. Lymphokine Cytokine Res. 1992;11:99-104.

    Google Scholar 

  99. Fujita M, Ishihara M, Kusama Y, et al. Effect of modified ultrafiltration on inflammatory mediators, coagulation factors, and other proteins in blood after an extracorporeal circuit. Artif Organs. 2004;28:310-313.

    Article  PubMed  CAS  Google Scholar 

  100. Barrera P, Jansosen EM, Demacker PN, et al. Removal of interleukin-1 beta and tumor necrosis factor from human plasma by in vitro dialysis with polyacrylonitrile membrane. Lymphokine Cytokine Res. 1992;11:1212-1218.

    Google Scholar 

  101. Rubens FD, Mesana T. The inflammatory response to cardiopulmonary bypass: a therapeutic overview. Perfusion. 2004;19(suppl 1):S5-S12.

    Article  PubMed  Google Scholar 

  102. Kolff W. First clinical experience with the artificial kidney. Ann Intern Med. 1965;62:608-619.

    PubMed  CAS  Google Scholar 

  103. Wellel DL, Adatia I, Giglia TM, et al. Use of inhaled nitric oxide and acetylcholine in the evaluation of pulmonary hypertension and endothelial function after cardiopulmonary bypass. Circulation. 1993;88:2128-2138.

    Article  Google Scholar 

  104. Goto K, Hama H, Kasuya Y. Molecular pharmacology and pathophysiological significance of endothelin. Jpn J Pharmacol. 1996;72:261-90.

    Article  PubMed  CAS  Google Scholar 

  105. Hiramatsu T, Imai Y, Kurosawa H, et al. Effects of dilutional and modified ultrafiltration in plasma endothelin-1 and pulmonary vascular resistance after the Fontan Procedure. Ann Thorac Surg. 2002;73:862-865.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Wang, W., Huang, H. (2010). Benefits of Ultrafiltration for Pulmonary Function. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_27

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics