Skip to main content

The Role of Nitric Oxide in Pulmonary Ischemia-Reperfusion Injury

  • Chapter
  • First Online:
Principles of Pulmonary Protection in Heart Surgery

Abstract

Impaired pulmonary function remains a major clinical problem in a variety of settings, such as shock, lung transplantation, and cardiac surgery with cardiopulmonary bypass or circulatory arrest. Pulmonary damage in this context is often associated with ischemia-reperfusion injury, leading to endothelial dysfunction, capillary leakage, and an intense neutrophilic inflammatory response. Clinically, this is recognized as a progressive deterioration in gas exchange, opacification of the chest X-ray, and increased pulmonary vascular resistance.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Della Rocca G, Coccia C. Nitric oxide in thoracic surgery. Minerva Anestesiol. 2005;71:313-318.

    PubMed  CAS  Google Scholar 

  2. Vinten-Johansen J, Zhao ZQ, Nakamura M, et al. Nitric oxide and the vascular endothelium in myocardial ischemia-reperfusion injury. Ann N Y Acad Sci. 1999;874:354-370.

    Article  PubMed  CAS  Google Scholar 

  3. Hickey MJ, Granger DN, Kubes P. Inducible nitric oxide synthase (iNOS) and regulation of leucocyte/endothelial cell interactions: studies in iNOS-deficient mice. Acta Physiol Scand. 2001;173:119-126.

    Article  PubMed  CAS  Google Scholar 

  4. Tapiero H, Mathe G, Couvreur P, Tew KD. I. Arginine. Biomed Pharmacother. 2002;56:439-445.

    Article  PubMed  CAS  Google Scholar 

  5. Moncada S. The L-arginine: nitric oxide pathway, cellular transduction and immunological roles. Adv Second Messenger Phosphoprotein Res. 1993;28:97-99.

    PubMed  CAS  Google Scholar 

  6. Duda DG, Fukumura D, Jain RK. Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med. 2004;10:143-145.

    Article  PubMed  CAS  Google Scholar 

  7. Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett. 2003;140–141:105-112.

    Article  PubMed  Google Scholar 

  8. Kurose I, Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ Res. 1994;74:376-382.

    Article  PubMed  CAS  Google Scholar 

  9. Kaminski A, Pohl CB, Sponholz C, et al. Up-regulation of endothelial nitric oxide synthase inhibits pulmonary leukocyte migration following lung ischemia-reperfusion in mice. Am J Pathol. 2004;164:2241-2249.

    Article  PubMed  CAS  Google Scholar 

  10. Wagner JG, Roth RA. Neutrophil migration mechanisms, with an emphasis on the pulmonary vasculature. Pharmacol Rev. 2000;52:349-374.

    PubMed  CAS  Google Scholar 

  11. Fagan KA et al. Upregulation of nitric oxide synthase in mice with severe hypoxia-induced pulmonary hypertension. Respir Res. 2001;2:306-313.

    Article  PubMed  CAS  Google Scholar 

  12. Tedgui A, Mallat Z. Anti-inflammatory mechanisms in the vascular wall. Circ Res. 2001;88:877-887.

    Article  PubMed  CAS  Google Scholar 

  13. Bell TE, Kongable GL, Steinberg GK. Mild hypothermia: an alternative to deep hypothermia for achieving neuroprotection. J Cardiovasc Nurs. 1998;13:34-44.

    PubMed  CAS  Google Scholar 

  14. Zhang L et al. Importance of endothelial nitric oxide synthase for the hypothermic protection of lungs against ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2006;131:969-974.

    Article  PubMed  CAS  Google Scholar 

  15. Liu J, Narasimhan P, Yu F, Chan PH. Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke. 2005;36:1264-1269.

    Article  PubMed  CAS  Google Scholar 

  16. Tritto I et al. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res. 1997;80:743-748.

    Article  PubMed  CAS  Google Scholar 

  17. Koti RS et al. Nitric oxide synthase distribution and expression with ischemic preconditioning of the rat liver. FASEB J. 2005;19:1155-1157.

    PubMed  CAS  Google Scholar 

  18. Kaminski A et al. Endothelial nitric oxide synthase mediates protective effects of hypoxic preconditioning in lungs. Respir Physiol Neurobiol. 2007;155:280-285.

    Article  PubMed  CAS  Google Scholar 

  19. Blais V, Rivest S. Inhibitory action of nitric oxide on circulating tumor necrosis factor-induced NF-kappaB activity and COX-2 transcription in the endothelium of the brain capillaries. J Neuropathol Exp Neurol. 2001;60:893-905.

    PubMed  CAS  Google Scholar 

  20. Guery B., Neviere R., Viget N. et al. Inhaled NO preadministration modulates local and remote ischemia-reperfusion organ injury in a rat model. J Appl Physiol. 1999;87:47-53

    Article  PubMed  CAS  Google Scholar 

  21. Hataishi R., Rodrigues A.C., Neilan T.G. et al. Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2006;291:H379-H384.

    Article  PubMed  CAS  Google Scholar 

  22. Fullerton DA, et al. Effective control of pulmonary vascular resistance with inhaled nitric oxide after cardiac operation. J Thorac Cardiovasc Surg 1996;111:753–762; discussion 762–763

    Google Scholar 

  23. Bloch KD, Ichinose F, Roberts JD Jr, Zapol WM. Inhaled NO as a therapeutic agent. Cardiovasc Res. 2007;75:339-348.

    Article  PubMed  CAS  Google Scholar 

  24. Date H et al. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg. 1996;111:913-919.

    Article  PubMed  CAS  Google Scholar 

  25. Ardehali A et al. A prospective trial of inhaled nitric oxide in clinical lung transplantation. Transplantation. 2001;72:112-115.

    Article  PubMed  CAS  Google Scholar 

  26. Meade MO et al. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am J Respir Crit Care Med. 2003;167:1483-1489.

    Article  PubMed  Google Scholar 

  27. Tornberg DC et al. Exhaled nitric oxide before and after cardiac surgery with cardiopulmonary bypass – response to acetylcholine and nitroglycerin. Br J Anaesth. 2005;94:174-180.

    Article  PubMed  CAS  Google Scholar 

  28. Humpl T et al. Levels of exhaled nitric oxide before and after surgical and transcatheter device closure of atrial septal defects in children. J Thorac Cardiovasc Surg. 2002;124:806-810.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Donndorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer London

About this chapter

Cite this chapter

Donndorf, P., Kaminski, A., Steinhoff, G. (2010). The Role of Nitric Oxide in Pulmonary Ischemia-Reperfusion Injury. In: Gabriel, E., Salerno, T. (eds) Principles of Pulmonary Protection in Heart Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-308-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-308-4_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-307-7

  • Online ISBN: 978-1-84996-308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics