Skip to main content

Pharmacological Studies to Reduce Brain Injury in Cardiac Surgery

  • Chapter
  • First Online:
Brain Protection in Cardiac Surgery

Abstract

An array of drugs have been used both experimentally and clinically as putative “neuroprotective agents” in an attempt to reduce the incidence of brain injury following cardiac surgery. Many have been used empirically with relatively little hard evidence supporting their use. Recently however, an increased understanding of the pathophysiology of ischemic brain injury has led to a more scientific approach and the intro­duction of many more possible therapeutic agents. Experimental trials are underway in several areas and there are real possibilities of future pharmacological neuroprotective drugs for use as adjuncts in cardiac surgery. Many of the studies have been conducted in models of hypothermic circulatory arrest (HCA) because of the higher incidence of brain injury observed in patients undergoing surgery utilizing HCA than in conventional cardiac surgery.1,2 This chapter aims to summarize the agents most commonly described so far and the evidence available for their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svensson L, Crawford E, Hess K, et al. Deep hypothermia with circulatory arrest. Determinants of stroke and early mortality in 656 patients. J Thorac Cardiovasc Surg. 1993; 106:19-31.

    CAS  PubMed  Google Scholar 

  2. Ergin M, Galla J, Lansman S, et al. Hypothermic circulatory arrest in operations on the thoracic aorta: Determinants of operative mortality and outcome. J Thorac Cardiovasc Surg. 1994;107:788-799.

    CAS  PubMed  Google Scholar 

  3. Olney J, Ho O, Rhee V, et al. Neurotoxic effects of glutamate. N Engl J Med. 1973;289:1374-1375.

    Article  CAS  PubMed  Google Scholar 

  4. Redmond J, Gillinov A, Zehr K, et al. Glutamate excitotoxicity: a mechanism of neurologic injury associated with hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1994;107:776-786.

    CAS  PubMed  Google Scholar 

  5. Baumgartner W, Redmond M, Brock M, et al. Patho­physiology of cerebral injury and future management. J Card Surg. 1997;12:300-311.

    Article  CAS  PubMed  Google Scholar 

  6. Muir K, Lees K. Clinical experience with excitatory amino acid antagonist drugs. Stroke. 1995;26:503-513.

    CAS  PubMed  Google Scholar 

  7. Rimpilainen J, Pokela M, Kiviluoma K, et al. The N-methyl-D-aspartate antagonist memantine has no neuroprotective effect during hypothermic circulatory arrest: a study in the chronic porcine model. J Thorac Cardiovasc Surg. 2001;121:957-970.

    Article  CAS  PubMed  Google Scholar 

  8. Terada H, Kazui T, Takinami M, et al. Reduction of ischemic spinal cord injury by dextrorphan: comparison of several methods of administration. J Thorac Cardiovasc Surg. 2001;122:979-985.

    Article  CAS  PubMed  Google Scholar 

  9. George C, Goldberg M, Choi D, et al. Dextromethorphan reduces neocortical ischemic neuronal damage in vivo. Brain Res. 1988;440:375-379.

    Article  CAS  PubMed  Google Scholar 

  10. Arrowsmith J, Harrison M, Newman M, et al. Neuroprotection of the brain during cardiopulmonary bypass: a randomized trial of remacemide during coronary artery bypass in 171 patients. Stroke. 1998;29:2357-2362.

    CAS  PubMed  Google Scholar 

  11. Redmond J, Zehr K, Blue M, et al. AMPA glutamate receptor antagonism reduces neurologic injury after hypothermic circulatory arrest. Ann Thorac Surg. 1995;59:579-584.

    Article  CAS  PubMed  Google Scholar 

  12. Tseng E, Brock M, Lange M, et al. Neuronal nitric oxide synthase inhibition reduces neuronal apoptosis after hypothermic circulatory arrest. Ann Thorac Surg. 1997;64:1639-1647.

    Article  CAS  PubMed  Google Scholar 

  13. Hiramatsu T, Jonas R, Miura T, et al. Cerebral metabolic recovery from deep hypothermic circulatory arrest after treatment with arginine and nitro-arginine methyl ester. J Thorac Cardiovasc Surg. 1996;112:698-707.

    Article  CAS  PubMed  Google Scholar 

  14. Tsui S, Kirshbom P, Davies M, et al. Nitric oxide production affects cerebral perfusion and metabolism after deep hypothermic circulatory arrest. Ann Thorac Surg. 1996;61:1699-1707.

    Article  CAS  PubMed  Google Scholar 

  15. Segawa D, Hatori N, Yoshizu H, et al. The effect of nitric oxide synthase inhibitor on reperfusion injury of the brain under hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 1998;115:925-930.

    Article  CAS  PubMed  Google Scholar 

  16. Tseng E, Brock M, Lange M, et al. Nitric oxide mediates neurologic injury after hypothermic circulatory arrest. Ann Thorac Surg. 1999;67:65-71.

    Article  CAS  PubMed  Google Scholar 

  17. Dewhurst A, Moore S, Liban J. Pharmacological agents as cerebral protectants during deep hypothermic circulatory arrest in adult thoracic aortic surgery. Anesthesia. 2002;57:1016-1021.

    Article  CAS  Google Scholar 

  18. Shapiro H. Barbiturates in brain ischemia. B J Anesthesia. 1985;57:82-95.

    Article  CAS  Google Scholar 

  19. Hall R, Murdoch J. Brain protection: physiological and pharmacological considerations. Part II: the pharmacology of brain protection. Can J Anaesth. 1990;37:762-777.

    Article  CAS  PubMed  Google Scholar 

  20. Nussmeier N, Arlund C, Slogoff S. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology. 1985;64:165-170.

    Article  Google Scholar 

  21. Zaidan J, Klochany A, Martin W, et al. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology. 1991;74:406-411.

    Article  CAS  PubMed  Google Scholar 

  22. Siegman M, Anderson R, Balaban R, et al. barbiturates impair cerebral metabolism during hypothermic circulatory arrest. Ann Thorac Surg. 1992;54:1131-1136.

    Article  CAS  PubMed  Google Scholar 

  23. Hirotani T, Kameda T, Kumamoto T, et al. Protective effect of thiopental against cerebral ischemia during circulatory arrest. Thorac Cardiovasc Surg. 1999;47:223-228.

    Article  CAS  PubMed  Google Scholar 

  24. Fukuda S, Warner D. Cerebral protection. B J Anesthesia. 2007;99(1):10-17.

    Article  CAS  Google Scholar 

  25. Newman M, Murkin J, Roach G, et al. Cerebral physiologic effects of burst suppression doses of propofol during nonpulsatile cardiopulmonary bypass. Anesth Analg. 1995;81:452-457.

    Article  CAS  PubMed  Google Scholar 

  26. Roach G, Newman M, Murkin J, et al. Ineffectiveness of burst suppression therapy in mitigating perioperative cerebrovascular dysfunction. Anesthesiology. 1999;90:1255-1264.

    Article  CAS  PubMed  Google Scholar 

  27. Stone J, Young W, Marans Z, et al. Consequences of electroencephalographic-suppressive doses of propofol in conjunction with deep hypothermic circulatory arrest. Anesthesiology. 1996;85:497-501.

    Article  CAS  PubMed  Google Scholar 

  28. Kawaguchi M, Furuya H, Patel P. Neuroprotective effects of anesthetic agents. J Anesth. 2005;19:150-156.

    Article  PubMed  Google Scholar 

  29. Loepke A, Priestley M, Schultz S, et al. Desflurane improves neurologic outcome after low-flow cardiopulmonary bypass in newborn pigs. Anesthesiology. 2002;97:1521-1527.

    Article  CAS  PubMed  Google Scholar 

  30. Landoni G, Biondi-Zoccai G, Zangrillo A, et al. Desfurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anes. 2007;21(4):502-511.

    Article  CAS  Google Scholar 

  31. Chumas P, Del Bigio M, Drake J, et al. A comparison of the protective effect of dexamethasone to other potential prophylactic agents in a neonatal rat model of cerebral hypoxia-ischemia. J Neurosurg. 1993;79:414-420.

    Article  CAS  PubMed  Google Scholar 

  32. Langley S, Chai P, Jaggers J, et al. Preoperative high dose methylprednisolone attenuates the cerebral response to deep hypothermic circulatory arrest. Eur J Cardiothorac Surg. 2000;17:279-286.

    Article  CAS  PubMed  Google Scholar 

  33. Shum-Tim D, Tchervenkov C, Jamal A, et al. Systemic steroid pretreatment improves cerebral protection after circulatory arrest. Ann Thorac Surg. 2001;72:1465-1472.

    Article  CAS  PubMed  Google Scholar 

  34. Shum-Tim D, Tchervenkov C, Laliberte E, et al. Timing of steroid treatment is important for cerebral protection during cardiopulmonary bypass and circulatory arrest: minimal protection of pump prime methylprednisolone. Eur J Cardiothorac Surg. 2003;24:125-132.

    Article  PubMed  Google Scholar 

  35. Lodge A, Chai P, Daggett C, et al. Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg. 1999;117:515-522.

    Article  CAS  PubMed  Google Scholar 

  36. Engelman R, Rousou J, Flack J III, et al. Influence of steroids on complement and cytokine generation after cardiopulmonary bypass. Ann Thorac Surg. 1995;60:801-804.

    Article  CAS  PubMed  Google Scholar 

  37. Bronicki R, Backer C, Baden H, et al. Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2000;69:1490-1495.

    Article  CAS  PubMed  Google Scholar 

  38. Palmer C, Vannucci R, Towfighi J. Reduction of perinatal hypoxic-ischemic brain damage with allopurinol. Pediatr Res. 1990;27(4):332-336.

    Article  CAS  PubMed  Google Scholar 

  39. Johnson W, Kayser K, Brenowitz J, et al. A randomized controlled trial of allopurinol in coronary bypass surgery. Am Heart J. 1991;121:20-24.

    Article  CAS  PubMed  Google Scholar 

  40. Clancy R, McGaurn S, Goin J, et al. Allopurinol neurocardiac protection trial in infants undergoing heart surgery using deep hypothermic circulatory arrest. Pediatrics. 2001;108:61-70.

    Article  CAS  PubMed  Google Scholar 

  41. Cao X, Phillis J. A-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res. 1994;644:267-272.

    Article  CAS  PubMed  Google Scholar 

  42. Langley S, Chai P, Jaggers J, et al. The free radical spin trap a-phenyl-tert-butyl nitrone attenuates the cerebral response to deep hypothermic ischemia. J Thorac Cardiovasc Surg. 2000;119:305-313.

    Article  CAS  PubMed  Google Scholar 

  43. Yoshimura N, Okada M, Ota T, et al. Pharmacologic ­intervention for ischemic brain edema after retrograde ­cerebral perfusion. J Thorac Cardiovasc Surg. 1995; 109:1173-1181.

    Article  CAS  PubMed  Google Scholar 

  44. Hirotani T, Kameda T, Kumamoto T, et al. Aortic arch repair using hypothermic circulatory arrest technique associated with pharmacological brain protection. Eur J Cardiothorac Surg. 2000;18:545-549.

    Article  CAS  PubMed  Google Scholar 

  45. Griepp E, Griepp R. Cerebral consequences of hypothermic circulatory arrest in adults. J Card Surg. 1992;7(2):134-155.

    Article  CAS  PubMed  Google Scholar 

  46. Legault C, Furberg C, Wagenknecht L, et al. Nimodipine neuroprotection in cardiac valve replacement. Stroke. 1996;27:593-598.

    CAS  PubMed  Google Scholar 

  47. Keyrouz S, Diringer M. Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care. 2007;11(4):220-237.

    Article  PubMed  Google Scholar 

  48. Azariades M, Firmin R, Lincoln C, et al. The effect of propanolol on the cerebral electrical response to deep hypothermia and total circulatory arrest in lambs. J Thorac Cardiovasc Surg. 1990;99:1030-1037.

    CAS  PubMed  Google Scholar 

  49. Amory D, Grigore A, Amory J, et al. Neuroprotection is associated with b-adrenergic receptor antagonists during cardiac surgery: evidence from 2,575 patients. J Cardiothorac Vasc Anes. 2002;16(3):270-277.

    Article  Google Scholar 

  50. Murkin J. Postoperative cognitive dysfunction: aprotinin, bleeding and cognitive testing. Can J Anaesth. 2004;51:957-962.

    Article  PubMed  Google Scholar 

  51. Iwata Y, Nicole O, Okamura T, et al. Aprotinin confers neuroprotection by reducing excitotoxic cell death. J Thorac Cardiovasc Surg. 2008;135:573-578.

    Article  CAS  PubMed  Google Scholar 

  52. Sedrakyan A, Treasure T, Elefteriades J. Effect of aprotinin on clinical outcomes in coronary artery bypass graft surgery: a systemic review and meta-analysis of randomized clinical trials. J Thorac Cardiovasc Surg. 2004;128:442-448.

    Article  CAS  PubMed  Google Scholar 

  53. Royston D, Levy J, Fitch J, et al. Full-dose aprotinin use in coronary artery bypass graft surgery: an analysis of perioperative pharmacotherapy and patient outcomes. Anesth Analg. 2006;103:1082-1088.

    Article  CAS  PubMed  Google Scholar 

  54. Harmon D, Ghori K, Eustace N, et al. Aprotinin decreases the incidence of cognitive deficit following CABG and cardiopulmonary bypass: a pilot randomized controlled study. Can J Anaesth. 2004;51(10):1002-1009.

    Article  PubMed  Google Scholar 

  55. Fergusson D, Hebert P, Mayer C, et al. A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. N Engl J Med. 2008;358(22):2319-2331.

    Article  CAS  PubMed  Google Scholar 

  56. Bacher A, Zornow M. Lamotrigine inhibits extracellular glutamate accumulation during transient global cerebral ischemia in rabbits. Anesthesiology. 1997;86:459-463.

    Article  CAS  PubMed  Google Scholar 

  57. Conroy B, Black D, Lin C, et al. Lamotrigine attenuates cortical glutamate release during global cerebral ischemia in pigs on cardiopulmonary bypass. Anesthesiology. 1999;90:844-854.

    Article  CAS  PubMed  Google Scholar 

  58. Anttila V, Rimpilainen J, Pokela M, et al. Lamotrigine improves cerebral outcome after hypothermic circulatory arrest: a study in a chronic porcine model. J Thorac Cardiovasc Surg. 2000;120:247-255.

    Article  CAS  PubMed  Google Scholar 

  59. Rimpilainen J, Romsi P, Pokela M, et al. Lamotrigine plus leukocyte filtration as a neuroprotective strategy in experimental hypothermic circulatory arrest. Ann Thorac Surg. 2002;73:163-172.

    Article  PubMed  Google Scholar 

  60. Williams J, Barreiro C, Nwakanma L, et al. Valproic acid prevents brain injury in a canine model of hypothermic circulatory arrest: a promising new approach to neuroprotection during cardiac surgery. Ann Thorac Surg. 2006; 81:2235-2242.

    Article  PubMed  Google Scholar 

  61. Weber M, Taylor C. Damage from oxygen and glucose deprivation in hippocampal slices is prevented by tetrodotoxin, lidocaine and phenytoin without blockade of action potentials. Brain Res. 1994;664:167-177.

    Article  CAS  PubMed  Google Scholar 

  62. Shuaib A, Waqaar T, Ijaz M, et al. Neuroprotection with felbamate: a 7- and 28-day study in transient forebrain ischemia in gerbils. Brain Res. 1996;727:65-70.

    CAS  PubMed  Google Scholar 

  63. Lei B, Cottrell J, Kass I. Neuroprotective effect of low-dose lidocaine in a rat model of transient focal cerebral ischemia. Anesthesiology. 2001;95:445-451.

    Article  CAS  PubMed  Google Scholar 

  64. Zhou Y, Wang D, Du M, et al. Lidocaine prolongs the safe duration of circulatory arrest during deep hypothermia in dogs. Can J Anaesth. 1998;45(7):692-698.

    Article  CAS  PubMed  Google Scholar 

  65. Mitchell S, Pellett O, Gorman D. Cerebral protection by lidocaine during cardiac operations. Ann Thorac Surg. 1999;67:1117-1124.

    Article  CAS  PubMed  Google Scholar 

  66. Wang D, Wu X, Li J, et al. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesth Analg. 2002;95:1134-1141.

    Article  CAS  PubMed  Google Scholar 

  67. Shiga Y, Onodera H, Matsuo Y, et al. Cyclosporin A protects against ischemia-reperfusion injury in the brain. Brain Res. 1992;595:145-148.

    Article  CAS  PubMed  Google Scholar 

  68. Hagl C, Tatton N, Khaladj N, et al. Involvement of apoptosis in neurological injury after hypothermic circulatory arrest: a new target for therapeutic intervention? Ann Thorac Surg. 2001;72:1457-1464.

    Article  CAS  PubMed  Google Scholar 

  69. Strauch J, Spielvogel D, Haldenwang P, et al. Cooling to 100C and treatment with cyclosporine A improve cerebral recovery following prolonged hypothermic circulatory arrest in a chronic porcine model. Eur J Cardiothorac Surg. 2005;27:74-80.

    Article  PubMed  Google Scholar 

  70. Tatton N, Hagl C, Nandor S, et al. Apoptotic cell death in the hippocampus due to prolonged hypothermic circulatory arrest: comparison of cyclosporine A and cycloheximide on neuron survival. Eur J Cardiothorac Surg. 2001;19:746-755.

    Article  CAS  PubMed  Google Scholar 

  71. Redmond J, Gillinov A, Blue M, et al. The monosialoganglioside, GM1, reduces neurologic injury associated with hypothermic circulatory arrest. Surgery. 1993;114:324-333.

    CAS  PubMed  Google Scholar 

  72. Sola A, Berrios M, Sheldon R, et al. Fructose-1, 6-bisphosphate after hypoxic ischemic injury is protective to the neonatal rat brain. Brain Res. 1996;741:294-299.

    Article  CAS  PubMed  Google Scholar 

  73. LeBlanc M, Farias L, Evans O, et al. Fructose-1, 6-bisphosphate, when given immediately before reoxygenation, or before injury, does not ameliorate hypoxic ischemic injury to the central nervous system in the newborn pig. Crit Care Med. 1991;19(1):75-83.

    Article  CAS  PubMed  Google Scholar 

  74. Romsi P, Kaakinen T, Kiviluoma K, et al. Fructose-1, 6-bisphosphate for improved outcome after hypothermic circulatory arrest in pigs. J Thorac Cardiovasc Surg. 2003;125:686-698.

    Article  CAS  PubMed  Google Scholar 

  75. Quinn D, Pagano D, Bonser R, et al. Improved myocardial protection during cornary artery surgery with glucose-insulin-potassium: a randomized controlled trial. J Thorac Cardiovasc Surg. 2006;131:34-42.

    Article  CAS  PubMed  Google Scholar 

  76. Payne R, Tseng M, Schurr A. The glucose paradox of cerebral ischemia: evidence for corticosterone involvement. Brain Res. 2003;971:9-17.

    Article  CAS  PubMed  Google Scholar 

  77. Voll C, Auer R. Insulin attenuates ischemic brain damage independent of its hypoglycemic effect. J Ceeb Blood Flow Metab. 1991;11:1006-1014.

    CAS  Google Scholar 

  78. Auer R. Insulin, blood glucose levels, and ischemic brain damage. Neurology. 1998;51(Suppl 3):S39-S43.

    CAS  PubMed  Google Scholar 

  79. Schipke J, Friebe R, Gams E. Forty years of glucose-insulin-potassium (GIK) in cardiac surgery: a review of randomized, controlled trials. Eur J Cardiothorac Surg. 2006;29:479-485.

    Article  PubMed  Google Scholar 

  80. Young B, Ott L, Dempsey R, et al. Relationship between admission hyperglycemia and neurologic outcome of severely brain-injured patients. Ann Surg. 1989;210(4):466-473.

    Article  CAS  PubMed  Google Scholar 

  81. Pulsinelli W, Levy D, Sigsbee B, et al. Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med. 1983;74:540-544.

    Article  CAS  PubMed  Google Scholar 

  82. den BG Van, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359-1367.

    Article  Google Scholar 

  83. Vannucci R, Rossini A, Towfighi J. Effect of hyperglycemia on ischemic brain damage during hypothermic circulatory arrest in newborn dogs. Pediatr Res. 1996;40(2):177-184.

    Article  CAS  PubMed  Google Scholar 

  84. Ekroth R, Thompson R, Lincoln C, et al. Elective deep hypothermia with total circulatory arrest: changes in plasma creatine kinase BB, blood glucose, and clinical variables. J Thorac Cardiovasc Surg. 1989;97:30-35.

    CAS  PubMed  Google Scholar 

  85. Steward D, Da Silva C, Flegel T. Elevated blood glucose levels may increase the danger of neurological deficit following profoundly hypothermic cardiac arrest. Anesthesiology. 1988;68:653.

    Article  CAS  PubMed  Google Scholar 

  86. Ceriana P, Barzaghi N, Locatelli A, et al. Aortic arch surgery: retrospective analysis of outcome and neuroprotective strategies. J Cardiovasc Surg. 1998;39:337-342.

    CAS  Google Scholar 

  87. De Ferranti S, Gauvreau K, Hickey P, et al. Intraopera­-tive hyperglycemia during infant cardiac surgery is not ­associated with adverse neurodevelopmental outcomes at 1, 4, and 8 years. Anesthesiology. 2004;100:1345-1352.

    Article  PubMed  Google Scholar 

  88. Ranasinghe A, Quinn D, Pagano D, et al. Glucose-insulin-potassium and tri-iodothyronine individually improve hemodynamic performance and are associated with reduced troponin I release after on-pump coronary artery bypass grafting. Circulation. 2006;114:I245-I250.

    PubMed  Google Scholar 

  89. Akao M, Ohler A, O’Rourke B, et al. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res. 2001;88:1267-1275.

    Article  CAS  PubMed  Google Scholar 

  90. Domoki F, Periaccante J, Veltkamp R, et al. Mitochondrial potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs. Stroke. 1999;30:2713-2719.

    CAS  PubMed  Google Scholar 

  91. Shake J, Peck E, Marban E, et al. Pharmacologically induced preconditioning with diazoxide: a novel approach to brain protection. Ann Thorac Surg. 2001;72:1849-1854.

    Article  CAS  PubMed  Google Scholar 

  92. Caparrelli D, Cattaneo S, Bethea B, et al. Pharmacological preconditioning ameliorates neurological injury in a model of spinal cord ischemia. Ann Thorac Surg. 2002;74:838-845.

    Article  PubMed  Google Scholar 

  93. Grilli M, Pizzi M, Memo M, et al. Neuroprotection by ­aspirin and sodium salicylate through blockade of NF-KB activation. Science. 1996;274:1383-1385.

    Article  CAS  PubMed  Google Scholar 

  94. Sawa Y, Morishita R, Suzuki K, et al. A Novel strategy for myocardial protection using in vivo transfection od cis element ‘decoy’ against nfkb binding site. Circulation. 1997;96(suppl II):II280-II285.

    Google Scholar 

  95. Ueno T, Sawa Y, Kitagawa-Sakakida S, et al. Nuclear ­factor-kB decoy attenuates neuronal damage after global brain ischemia: a future strategy for brain protection during circulatory arrest. J Thorac Cardiovasc Surg. 2001; 122(4):720-727.

    Article  CAS  PubMed  Google Scholar 

  96. Calapai G, Marciano M, Corica F, et al. Erythropoietin protects against brain ichemic injury by inhibition of nitric oxide formation. Eur J of Pharmacology. 2000;401:349-356.

    Article  CAS  Google Scholar 

  97. Sadamoto Y, Igase K, Sakanaka M, et al. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun. 1998;253:26-32.

    Article  CAS  PubMed  Google Scholar 

  98. Romsi P, Ronka E, Kiviluoma K, et al. Potential neuroprotective benefits of erythropoietin during experimental hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2002;124:714-723.

    Article  CAS  PubMed  Google Scholar 

  99. Givehchian M, Beschorner R, Ehmann C et al. Neuroprotective effects of erythropoietin during deep hypothermic circulatory arrest Eur J Cardiothorac Surg. 2010;37:662–668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah K. Harrington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer London

About this chapter

Cite this chapter

Harrington, D.K., Dronavalli, V.B., Bonser, R.S. (2011). Pharmacological Studies to Reduce Brain Injury in Cardiac Surgery. In: Bonser, R., Pagano, D., Haverich, A. (eds) Brain Protection in Cardiac Surgery. Springer, London. https://doi.org/10.1007/978-1-84996-293-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-84996-293-3_15

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84996-292-6

  • Online ISBN: 978-1-84996-293-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics